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1 Nagata’s theorem and conjecture

In the first lecture we will recall Nagata’s theorem on the degrees of plane curves
with a square number of multiple points at generic positions, and its application to
solve Hilbert’s 14-th problem. Then we will state Nagata’s celebrated conjecture on
curves with an arbitrary number of points and we will review the present state of
knowledge on it. The main references for this part are [10], [9], [11], [4], [3]. The
lecture is organized in three sections:

1.1 Hilbert’s 14-th problem

1.2 Ciliberto-Miranda’s proof for Nagata’s Theorem

1.3 Nagata’s conjecture

2 Conjectures on the Mori and nef cones

In the second lecture, we will look at the nef cone and the cone of curves of a blowup
of P2, and their relationship with Nagata’s conjecture. We will introduce the notion
of Nagata-type ray, and will state some strong forms of Nagata’s conjecture in the
language of cones. The main references for this part are [8], [9], [5], [3]. The lecture
is organized in three sections:

2.1 Cones of R-divisor classes

2.2 Non polyhedrality

2.3 Nagata-type statements for extremal rays
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3 Conjectures on valuations

In the third lecture, we generalize the type of conditions imposed to plane curves,
from requiring multiple points to imposing certain values with respect to arbitrary
rank 1 valuations. This leads to a conjecture analogous to Nagata’s for a number
of points which is real, rather than a natural number. The main references for this
part are [2, Chapter 8], [7], [6]. The lecture is organized in four sections:

3.1 Valuations on projective surfaces

3.2 Cluster of centers of a valuation

3.3 Quasimonomial valuations

3.4 Berkovich topology and Waldschmidt functions

4 Cones of b-divisors

The conjectures presented in lectures 2 and 3 lead to two different ways of approx-
imating the Nagata ray by rational rays of Nagata type, which could conceivably
lead to a proof of Nagata’s conjecture. If time permits, in this last lecture we will
show that both approaches can actually be described in a unified way by using
Shokurov’s notion of b-divisors in the Zariski-Riemann space [1]. This is work in
progress and owes much to discussions with S. Urbinati. The lecture is organized in
three sections:

4.1 Zariski-Riemann space and b-divisors

4.2 Relative Zariski decomposition

4.3 Continuity issues
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Exercises for the first two lectures

Notations used in these exercises are introduced in the lectures. Some of them can
also be found in professor Harbourne’s notes.

Lecture 1

1. Let Z = m1x1 + · · · + mnxn be a nonzero fat point subscheme of P2. Show
that 1 ≤ α̂(I(Z)) ≤

√∑
m2

i . Hint: look at [I(kmZ)]kd where d/m is rational

and close to but bigger than
√∑

m2
i and k � 0.

2. We say that a collection of n ≥ 3 points in P2 is in linear general position
if no r of the points are contained in a line. (In particular, the points are
all distinct.) Given n points in linear general position, we can perform the
standard Cremona transformation on any 3 of the n points; this gives a differ-
ent collection of n points in P2. They need not be in linear general position.
We say that a collection of n points is in Cremona general position if they
are in linear general position and this remains true after any finite sequence
of standard Cremona transformations on subsets of 3 points. Show that this
corresponds to a countable intersection of open subsets of (P2)n.

3. Let δ, m and e be positive integers with e ≥ δm, and let d = (δ + 1)m,
∆ = e − δm and n = 2δ + 1. Pick points p1, . . . , pn ∈ P2 in Cremona general
position. Show that a plane curve of degree d, with multiplicity e at p1 and
multiplicity m at each of p2, . . . , pr can be transformed by Cremona maps into
a curve of degree m−∆δ with a point of multiplicity m.

4. Show that, if C is a closed cone in R2, then it is finitely generated. Give an
example of a closed cone in R3 which is not finitely generated. Is it true that
if a semigroup S ⊂ Z2 spans a closed cone, then S itself is finitely generated?

Lecture 2

1. Show that Qn ⊆ NE(Xn). Hint: use the first exercise of the previous lecture.

2. Let Dn = (
√
n− 1, 1n) and let [Dn] ⊂ Rn+1 be the corresponding ray. Show

that D2
n = −1, and Dn ·Kn > 0 for n ≥ 8. We will denote by ∆<

n [resp. ∆4
n ]

the set of classes ξ ∈ N1(X) such that ξ ·Dn ≥ 0 [resp. ξ ·Dn ≤ 0]. Show that
if n ≥ 10 then all (−1)-rays lie in the cone Dn := Qn − [Dn]; and if n = 10,
all (−1)-rays lie on the boundary of the cone Dn. Hint: [5].

3. Find a non-nef ray in ∂Q�
11.

4. Prove that the ray [(7; 3, 210)] is of Nagata type. Hint: use the Ciliberto-
Miranda method of the first lecture.
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