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Abstract. The main focus of these lectures is recent work on linear systems in
which line arrangements play a role, including problems such as semi-effectivity,
containment problems of symbolic powers of homogeneous ideals in their powers,
bounded negativity, and a new perspective on the SHGH Conjecture. Along the way
we will be concerned with asymptotic invariants such as Waldschmidt constants,
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1. Line arrangements, semi-effectivity and Waldschmidt constants

1.1. Line arrangements. We will always take K to be an algebraically closed field. A line
arrangement over K is a finite list L1, . . . , Ls ⊂ P2

K , s > 1, of distinct lines in the projective plane
and their crossing points (i.e., the points of intersections of the lines). Line arrangements have
been coming up in a range of topics of recent research interest that we will be looking at. A useful
notation is tk, for k ≥ 2, for the number of points lying on exactly k lines.

Exercise 1.1.1. Consider a line arrangement L1, . . . , Ld ⊂ P2
K . Let s be the number of crossing

points.

(a) Show that the number of crossing points is s = t2 + . . .+ td.

(b) Show that
(
d
2

)
=
∑

k tk
(
k
2

)
.

(c) Show that 0 ≤ td ≤ 1, and that tk = 0 for all k < d if and only if td = 1.
(d) Show that d2 −

∑
k tkk

2 = d−
∑

k tkk.
(e) If the lines do not all go through a single point, show s ≥ d. (Hint: This is a weak form

of the de Bruijn-Erdős theorem in incidence geometry. See [1] for a combinatorial proof.
Here is a sketch for an algebraic geometric proof. Blow up the crossing points. Look at the
classes of the proper transforms of the lines. Show that they are linearly independent in
the divisor class group of the blow up and span a negative definite subspace.)

An interesting property that a line arrangement can have is the t2 = 0 property; i.e., that
whenever two of the lines Li cross, there is at least one other line that also goes through that
crossing point. An easy such example is the case of s ≥ 3 concurrent lines (i.e., s ≥ 3 lines through
a point p). Over the reals, these are the only line arrangements with t2 = 0, due to the following
result [3]:

Theorem 1.1.2. Given a real line arrangement of s lines with ts = 0 (i.e., the lines are not
concurrent), we have

t2 ≥ 3 +
∑
k>2

tk(k − 3).

If char(K) = p > 0, there are many examples of line arrangements with t2 = 0.

Exercise 1.1.3. Assume char(K) = p > 0. Consider the arrangement of all lines defined over the
finite field Fq ⊂ K of order q. Show that there are q2 + q + 1 lines and q2 + q + 1 crossing points,
that tk = 0 except for tq+1 = q2 + q + 1, that each line contains q + 1 of the points and that each
point is on q + 1 of the lines.

Over K = C only four kinds of line arrangements seem to be known with t2 = 0. Here is the list.
• Any set of s ≥ 3 concurrent lines.
• The Fermat arrangement of 3n lines for n ≥ 3: The lines of this arrangement are defined by

the factors of (xn− yn)(xn− zn)(yn− zn), shown for n = 3 in Figure 1. Each line contains n+ 1 of
the points, and we have tk = 0 except for t3 = n2 and tn = 3 when n > 3 or t3 = 12 when n = 3.
• The Klein arrangement of 21 lines [2]: here tk = 0 except for t4 = 21 and t3 = 28. For this

arrangement, each line contains 4 points where 3 lines cross and 4 points where 3 lines cross.
• The Wiman arrangement of 45 lines [4]: here tk = 0 except for t5 = 36, t4 = 45 and t3 = 120.

For this arrangement, each line contains 4 points where 5 lines cross, 4 points where 4 lines cross
and 8 points where 3 lines cross.

Exercise 1.1.4. Show that t2 6= 0 for the Fermat arrangement if and only if n = 2. Note that the
Fermat arrangement is defined over the reals for n = 1, 2; draw it in those cases.

Open Problem 1.1.5. Show either that there are other complex line arrangements with t2 = 0,
or that the four types listed above are the only ones.
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xn − yn xn − zn

yn − zn

Figure 1. The Fermat arrangement of 3n complex lines and their n2 + 3 points of intersection
(indicated by filled in circles) for n = 3. (The coordinate axes are represented by dotted lines. At
each coordinate vertex there occur n of the 3n lines, defined by the forms shown; the n2 + 3 points
consist of a complete intersection of n2 points plus the 3 coordinate vertices. This arrangement
does not exist over the reals: one must regard the open green circles as representing collinear points,
and likewise the dotted red circles as representing collinear points.)
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1.2. Semi-effectivity.

Definition 1.2.1. Let C be a plane curve defined as a scheme by a nonzero homogeneous polyno-
mial F ∈ R = K[x, y, z] = K[P2]. Then the multiplicity of C or F at p ∈ P2, denoted multp(C) or
multp(F ), is the largest m such that F ∈ I(p)m.

Example 1.2.2. The multiplicity of F = x3y4 + x5z2 at p = [0 : 0 : 1] is 5.

Definition 1.2.3. Given two curves C and D defined by nonconstant forms F and G with no
common factors, we define the intersection multiplicity of C and D at p by Ip(C,D) = dimK [R/J ]t
for t� 0, where J = I(p)m + (F,G) for any m ≥ deg(F ) deg(G).

Theorem 1.2.4 (Bezout’s Theorem). Let C and D be curves defined by nonconstant forms F
and G with no common factors. Then

∑
p Ip(C,D) = deg(C) deg(D). Moreover, Ip(C,D) ≥

multp(C) multp(D) for each point p ∈ P2.

Corollary 1.2.5. Let C and D be plane curves defined by nonconstant forms F and G. Let
S ⊂ P2 be a finite set of points. If

∑
p∈S multp(C) multp(D) > deg(C) deg(D), then C and D have

a common component (i.e., F and G have a common factor of positive degree).

Consider distinct points p1, . . . , ps ∈ PN . Let π : X → PN be the blow up of the points. Let L be
the pullback of a general hyperplane and let Ei be the inverse image of pi. Then the divisor class
group Cl(X) is free abelian with basis given by the divisor classes [L], [E1], . . . , [Es]. When N = 2,
this is an orthogonal basis for the intersection form on Cl(X), with −L2 = E2

1 = · · · = E2
s = −1

and we have −KX = 3L− E1 − · · · − Es.
Given mi ≥ 0, consider the homogeneous ideal I = ∩iI(pi)

mi ⊆ K[PN ] = K[x0, . . . , xN ]. It
defines a 0-dimensional subscheme Z = m1p1 + · · · + msps ⊂ PN called a fat point subscheme,
where by definition we have I(Z) = I. We denote the K-vector space span of the forms of degree
t in I(Z) by [I(Z)]t. Let EZ = m1E1 + · · ·+msEs.

Exercise 1.2.6. (See [11, Proposition IV.1.1].) Show there is a canonical K-vector space isomor-
phism

H0(X,OX(tL− EZ)) ∼= [I(Z)]t.

Definition 1.2.7. Given a divisor D on a smooth projective surface X, we say D is semi-effective
if for some m > 0 we have h0(X,OX(mD)) > 0 (i.e., for some m > 0, |mD| 6= ∅, so mD is linearly
equivalent to an effective divisor).

Here is a question raised by Eisenbud and Velasco (2009) regarding semi-effectivity.

Open Problem 1.2.8 (Eisenbud-Velasco). Given an arbitrary t ≥ 0 and EZ = m1E1+ · · ·+msEs
with mi ≥ 0, is there an algorithm to determine whether tL−EZ is semi-effective (or equivalently
dim[I(mZ)]mt > 0 for Z = m1p1 + · · ·+msps)?

1.3. Waldschmidt constants. Eisenbud and Velasco’s question can be partially addressed by
Waldschmidt constants [19]. Let I ⊆ K[PN ] be a nonzero homogeneous ideal. We define α(I) to
be the least t such that [I]t 6= 0.

Exercise 1.3.1. If 0 ( I ⊆ J ⊆ K[PN ] are homogeneous ideals, show that α(IJ) = α(I) + α(J).
In particular, conclude that α(Ir) = r α(I).

As an aside we note that given Z = m1p1 + · · · + msps ⊂ PN , its ideal I = I(Z) = I(p1)
m1 ∩

· · ·∩ I(ps)
ms , the mth symbolic power of I, denoted I(m), is I(m) = I(Z)(m) = I(mZ) = I(p1)

mm1 ∩
· · · ∩ I(ps)

mms . This terminology is often used in the literature. Moreover, one can define symbolic
powers of any homogeneous ideal, but doing so involves technicalities, so we will avoid that for
now.
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Definition 1.3.2. Let Z = m1p1 + · · · + msps be a nonzero fat point subscheme of PN . The
Waldschmidt constant α̂(I(Z)) of I(Z) is

α̂(I(Z)) = inf
{α(I(mZ))

m
: m > 0

}
.

Exercise 1.3.3. Let Z be a nonzero fat point subscheme of PN .

(a) Show that 1 ≤ α̂(I(Z)) ≤
∑

imi.
(b) Let m,n be positive integers. Show that

α(I((m+ n)Z)) ≤ α(I(mZ)) + α(I(nZ)).

(c) Let m,n be positive integers. Show that

α(I(mnZ))

mn
≤ α(I(mZ))

m
.

(d) Use Fekete’s Subadditivity Lemma [7] to conclude for each n that

α̂(I(Z)) = lim
m→∞

α(I(mZ))

m
≤ α(I(nZ))

n
.

(e) Show that α̂(I(nZ)) = n α̂(I(Z)).
(f) Over the complexes, Waldschmidt and Skoda [19, 18] obtained the bound

α(I(Z))

N
≤ α̂(I(Z))

using some rather hard analysis. A proof using multiplier ideals is given in [15]. Here is
another approach (see [12]). It is known that I((N +m− 1)rZ) ⊆ I(mZ)r for all m, r > 0
[5, 14]. Assuming this, show for each n > 0 that

α(I(mZ))

N +m− 1
≤ α̂(I(Z))

and hence that
α(I(mZ))

N +m− 1
≤ α̂(I(Z)) ≤ α(I(mZ))

m
.

Exercise 1.3.4. Let Z be a nonzero fat point subscheme of PN and I = I(Z). If α(I(m))
m ≤ α(I(n))

n ,
show that

α(I(m+n))

m+ n
≤ α(I(n))

n
.

Exercise 1.3.5. Let Z = m1p1 + · · ·+msps and Z ′ = m′1p1 + · · ·+m′sps be fat point subschemes
of PN for distinct points pi with 0 ≤ mi ≤ m′i for all i. Show that α̂(I(Z)) ≤ α̂(I(Z ′)). Give an
example where Z 6= Z ′ but α̂(I(Z)) = α̂(I(Z ′)).

Exercise 1.3.6. Let Z = m1p1 + · · ·+msps be a nonzero fat point subscheme of PN . Show that

α̂(I(Z)) ≤ N

√∑
im

N
i .

By Exercise 1.3.3(f), it is possible to compute α̂(I(Z)) to any desired number of decimal places
by just computing α(I(mZ)) for large m. Thus for any real number a 6= α̂(I(Z)), it is possible to
computationally verify that a 6= α̂(I(Z)). What is not clear is how to computationally verify that
a = α̂(I(Z)) when a in fact does equal α̂(I(Z)).

Corollary 1.3.7. Let Z = m1p1 + · · · + msps ⊂ PN be a nonzero fat point subscheme. If t >
α̂(I(Z)), then dim[I(mZ)]mt > 0 for all m � 0, and if t < α̂(I(Z)), then dim[I(mZ)]mt = 0 for
all m > 0.
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Proof. Say t > α̂(I(Z)). Then for m � 0, we have mt > α(I(mZ)), so dim[I(mZ)]mt > 0. If
t < α̂(I(Z)), then mt < mα̂(I(Z)) ≤ α(I(mZ)) for all m, so dim[I(mZ)]mt = 0. �

In addition to computing Waldschmidt constants, recent work [3] raises the question of how large
the least m can be in Problem 1.2.8, given that h0(X,OX(tmL−mEZ)) > 0 for some m > 0.

Exercise 1.3.8. Let r > 1. Given distinct lines L1, . . . , L2r ⊂ P2 with tk = 0 for k > 2, let Z =
p1+· · ·+ps be the t2 points of intersections of the lines (so t2 =

(
2r
2

)
). Show that dim[I(mZ)]mr = 0

for all odd m > 0 and dim[I(mZ)]mr = 1 for all even m > 0. Conclude that α̂(I(Z)) = r and that
the least m such that h0(X,OX(mrL−mEZ)) > 0 is m = 2. Moreover, h0(X,OX(2rL−2EZ)) = 1
and the intersection matrix of the components of the unique divisor in |2(rL − EZ)| is negative
definite.

Exercise 1.3.9. Let Z be the reduced scheme consisting of the 9 crossing points defined in Figure
2. Show that the least m > 0 such that dim[I(m2Z)]5m > 0 is m = 2.

Figure 2. Three reducible conics (colored red, green and blue) through 4 general points (the black
dots) with their singular points (the three larger colored dots) plus an additional line (dashed black)
giving two more points (the open dots) define a set of 9 points.

Example 1.3.10. Consider points p1, p2 and p3 on an irreducible conic C ′, and the three points
p4, p5 and p6 of the conic infinitely near to these first three points, as show in Figure 3 (where the
infinitely near points are represented by tangent directions). Blow up all 6 points to get a surface
X, let C be the proper transform of C ′, and let Ei be the blow up of point pi. Thus Ei = Ni+Ei+3

for i = 1, 2, 3 has two components, as shown. Let L be the pullback of a line from P2 to X. Let
F = L−E3 −E4 −E6. Since F ·Ni < 0, if F were linearly equivalent to an effective divisor, then
F −N1 −N2 −N3 = L− E1 − E2 − E3 would be also, but it is not, since the points p1, p2, p3 are
not collinear.

However, 2F ∼ D = C + N1 + N2 + N3 is linearly equivalent to an effective divisor, and the
intersection matrix of the components of D is clearly negative definite.

Exercise 1.3.11. Generalize Example 1.3.10 by replacing the conic with a reduced irreducible
curve of degree d to obtain a surface X and a divisor F = L − Ei1 − · · · − Eit where t =

(
d+1
2

)
such that the least m with h0(X,OX(mF )) > 0 is d and the intersection matrix of the effective
divisor D ∼ dF is negative definite. (This contrasts with other exercises, where either the least m
is bounded, or the intersection matrix is not negative definite.)

Exercise 1.3.12. Let Z = p1 + · · ·+ p7 for the 7 points pi of the Fermat arrangement for n = 2.
Recall that the Fermat arrangement consists of n2 + 3 points, three of which are the coordinate
vertices of P2; assume that these three are p5, p6 and p7.

(a) Show that h0(X,OX(3F )) > 0 for F = 5L− 2EZ ; conclude that α(I(6mZ)) ≤ 15m. (Hint:
Show that |3F | contains a curve which is a sum of proper transforms of lines.)

(b) Show that the least m > 0 such that h0(X,OX(mF )) > 0 is m = 2.
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C

N1 ∼ E1 − E4

E4

N2 ∼ E2 − E5

E5

N3 ∼ E3 − E6

E6

C′

p1

p4

p2

p5

p3 p6

Figure 3. A conic with 3 points and 3 infinitely near points blown up.

(c) Show that H = 4L−E1−· · ·−E4−2(E5−E6−E7) is nef. (Recall that nef means H ·C ≥ 0
for every effective divisor C. Hint: Show that |3H| or even |H| contains a curve B′ which
is a sum of the proper transforms Bi of lines, and that H ·Bi ≥ 0 for each summand.)

(d) Conclude that α(I(6mZ)) ≥ 15m. (Hint: Note that H · F = 0.)
(e) Conclude that α̂(I(Z)) = 15

6 = 2.5.

Exercise 1.3.13. Let Z = p1 + · · · + ps be the s = n2 + 3 points pi of the Fermat arrangement
for n > 2, where pn2+1 = ps−2, pn2+2 = ps−1, pn2+3 = ps are the coordinate vertices. Let Y =
p1 + · · ·+ pn2 .

(a) Show that n = α̂(I(Y )) ≤ α̂(I(Z)).
(b) Show that the least m > 0 such that dim[I(mZ)]mn > 0 is m = 3. Conclude that

α(I(3Z)) ≤ 3n and thus that α̂(I(Z)) = n.

Exercise 1.3.14. Let Z = p1 + · · · + p49 be the points of the Klein arrangement. Show that the
least m > 0 such that dim[I(mZ)]m7 > 0 is m = 3. Conclude that α̂(I(Z)) ≤ 7 and α̂(I(3Z)) ≤ 21.
(Alternatively, let X = p1 + · · · + p21 and Y = p22 + · · · + p49, where X consists of the t4 = 21
points of the Klein arrangement of multiplicity 4 and Y consists of the t3 = 28 points of the Klein
arrangement of multiplicity 3. Let V = 4X + 3Y . Show that α̂(I(V )) = 21, and hence by Exercise
1.3.5 that α̂(I(3Z)) ≤ 21, so α̂(I(Z)) ≤ 7 by Exercise 1.3.3(e).)

Exercise 1.3.15. Let Z = p1 + · · · + p201 be the points of the Wiman arrangement. Show that
the least m > 0 such that dim[I(mZ)]m15 > 0 is m = 3. Conclude that α̂(I(Z)) ≤ 15 and
α̂(I(3Z)) ≤ 45. (Alternatively, let W = p1 + · · ·+ p36, X = p37 + · · ·+ p81 and Y = p82 + · · ·+ p201
where W consists of the t5 = 36 points of the Wiman arrangement of multiplicity 5, X consists of
the t4 = 45 points of the Wiman arrangement of multiplicity 4 and Y consists of the t4 = 45 points
of the Wiman arrangement of multiplicity 3. Let V = 5W + 4X + 3Y . Show that α̂(I(V )) = 45,
and hence by Exercise 1.3.5 that α̂(I(3Z)) ≤ 45, so α̂(I(Z)) ≤ 15 by Exercise 1.3.3(e).)

If Z is the reduced scheme of singular points of the Wiman arrangement of 45 lines, then
α̂(I(Z)) = 27/2 [2]. The Klein is a little harder, but it is looking like α̂(I(Z)) = 13/2 for the
Klein [2].

Open Problem 1.3.16. Compute α̂(I(Z)) if Z =
∑

i pi is the reduced scheme consisting of the
crossing points of the Klein arrangement of lines.

The least m can be bigger than just 3, even without using infinitely near points.
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Exercise 1.3.17. Assume char(K) > 0. Let Fq ⊂ K be a subfield of order q. Let Z = p1 + · · ·+ps
be all but one of the points of P2 defined over Fq (so s = q2 + q). Show that the least m > 0 such
that dim[I(mZ)]mq > 0 is m = q. Show that α̂(I(Z)) = q.

For additional examples, it is helpful to know the dimension of [I(Z)]t in each t. For general
points in P2, there is a conjecture for this, the SHGH Conjecture. But first, we put it in context
by recalling a general result.

Theorem 1.3.18. Given a fat point subscheme Z = m1p1 + · · ·+msps ⊂ PN , we have

dim[I(Z)]t ≥ max
{

0,

(
t+N

N

)
−
∑
i

(
mi +N − 1

N

)}
,

with equality for t ≥
∑

imi − 1.

Proof. Let I = I(Z). The forms in [I]t are the solutions to
∑

i

(
mi+N−1

N

)
homogeneous linear

equations (possibly not independent) on the
(
t+N
N

)
dimensional vector space of forms of degree t

(i.e., vanishing on Z imposes
∑

i

(
mi+N−1

N

)
conditions on all forms of degree t), so we get the lower

bound on the dimension as claimed.
The equality can be thought of as a form of the Chinese Remainder Theorem. Let R = K[PN ].

Let S = K[y1, . . . , yN ], where we think of yi as xi/x0, assuming that the coordinates xi have
been chosen such that x0 does not vanish at any of the points pi. If pi = (a0, . . . , an), let qi =
(a1/a0, . . . , aN/a0). Define J = J(q1)

m1 · · · J(qs)
ms , where J(qi) is the ideal of all polynomials in

S that vanish at qi. We have a vector space isomorphism (S/J)t ∼= [R/I]t = [R]t/[I]t given for any
polynomial (y1, . . . , yN ) of degree at most t by f(y1, . . . , yN ) 7→ xt0f(x1/x0, . . . , xN/x0), where by
(S/J)t we mean the vector space image under S → S/J of all polynomials of degree t or less in S.

The ideals J(qi)
mi are pairwise coprime, so J = ∩iJ(qi)

mi and S ∼= ⊕iS/J(qi)
mi . Since up to a

linear change of coordinates S/J(qi)
mi is S/(y1, . . . , yN )mi , we see that dimS/J(qi)

mi =
(
mi+N−1

N

)
,

hence dimS/J =
∑

i S/J(qi)
mi =

∑
i

(
mi+N−1

N

)
, so for t � 0 we have S/J = (S/J)t ∼= [R/I]t =

[R]t/[I]t, hence dim[I(Z)]t = dim[R]t − dim[R/I]t =
(
t+N
N

)
−
∑

i

(
mi+N−1

N

)
for t� 0.

The inverse isomorphism
∑

i S/J(qi)
mi → S/J is given by (f, . . . , fs) 7→

∑
i figi, where we can

represent fi by a polynomial of degree mi − 1 and gi is represented by a polynomial that doesn’t
vanish at qi and is in Πj 6=iJ(qj)

mj . By picking linear forms Li that vanish at qi but not at any other
qj , we can take gi to be Lm1

1 · · ·Lms
s /Lmi

i . Thus deg(figi) =
∑

imi − 1, so for t =
∑

imi − 1 we

have isomorphisms S/J = (S/J)t ∼= [R/I]t = [R]t/[I]t, hence dim[I(Z)]t =
(
t+N
N

)
−
∑

i

(
mi+N−1

N

)
for t ≥

∑
imi − 1. �

When N = 2, this also follows from Riemann-Roch for a blow up X of P2.

Exercise 1.3.19. Given distinct points p1, . . . , ps ∈ P2 and integers t,m1, . . . ,ms ≥ 0, let Z =
m1p1 + · · ·+msps. Using Riemann-Roch and Serre duality with F = tL− EZ , show that

h0(X,OX(F )) ≥ F 2 −KXF

2
+ 1.

Conclude that

dim[I(Z)]t = h0(X,OX(F )) ≥ max
{

0,

(
t+ 2

2

)
−
∑
i

(
mi + 1

2

)}
.

To obtain examples that are not exclusively positive characteristic examples, we now recall a
special case of the SHGH Conjecture (see [17, 10, 9, 13] for various equivalent versions of the full
conjecture).

Conjecture 1.3.20. Let Z = p1 + · · · + ps ⊂ P2 for general points pi, where either s is a square

or s > 8. Then dim[I(mZ)]t = max
{

0,
(
t+2
2

)
− s
(
m+1
2

)}
.
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Conjecture 1.3.20 is known to be true when s is a square [6, 4, 16].

Exercise 1.3.21. Consider Z = p1 + · · · + ps2 for s2 general points pi for s > 6. Let F =
(s+ 1)L− EZ . Show that the least m such that h0(X,OX(mF )) > 0 is m = d s−32 e.

Conjecturally, similar examples arise where the least m can be arbitrarily large even when the
number of points is fixed.

Exercise 1.3.22. (See [3].) Let s > 49 not be a square and consider positive integers t and r
such that t2 − sr2 = 1. Let Z = rp1 + · · · + rps for general points pi ∈ P2. Let F = tL − EZ .
Since F 2 > 0 and F · L > 0, we know h0(X,OX(mF )) > 0 for m � 0. Assuming the SHGH
Conjecture, show that the least such m satisfies m > r(s − 3

√
2s)/2. (Since there are examples

of t and r with t2 − sr2 = 1 and r arbitrarily large, there is no bound on the least m such that
h0(X,OX(mF )) > 0.)

1.4. Zariski Decompositions. Zariski decompositions were first proved for effective divisors [20]
on any smooth projective surface X. See [1] for a simplified proof. A more general version can be
found in [8]. Here we prove them for any effective divisor D on a blow up X of the plane. It is not
hard to see that it actually is enough to assume D is semi-effective (i.e., tD is linearly equivalent
to an effective divisor for some t > 0).

Theorem 1.4.1. Let X be the blow up of a finite set of points of the plane. If D = m1N1 + · · ·+
mrNr where the mi are positive integers and each Ni is a reduced irreducible curve on X, then we
can write D = P +N where P = a1N1 + · · ·+ arNr is nef, the ai are nonnegative, P ·N = 0 and
either N = 0 or N = bi1Ni1 + · · ·+ bijNis with the bij positive and the matrix (Nij ·Nik) negative
definite. Moreover, if D′ is effective with Zariski decomposition P ′ +N ′, and linearly equivalent to
D, then P ′ and P are linearly equivalent and N ′ = N .

Exercise 1.4.2. Let X be the blow up of r points of the plane. If N1, . . . , Ns are prime divisors
such that the matrix (Ni · Nj) is negative definite, prove that the Ni are linearly independent in
the divisor class group. Conclude that s ≤ r.

Exercise 1.4.3. Let X be the blow up of the r =
(
6
2

)
= 15 points of intersection of 6 general lines

in the plane. Let D be the sum of the proper transforms of the 6 lines (so up to linear equivalence
D ∼ 6L − 2E1 − · · · − 2E15). Let L be the proper transform of a general line. Find a Zariski
decomposition for each of the following divisors: D3 = D/2 ∼ 3L−E1−· · ·−E15, D4 = L+D/2 ∼
4L−E1− · · · −E15, D5 = 2L+D/2 ∼ 5L−E1− · · · −E15, D6 = D ∼ 6L− 2E1− · · · − 2E15, and
D7 = 4L+D ∼ 10L− 2E1 − · · · − 2E15.

For the proof of Theorem 1.4.1 we will use a lemma and some exercises.

Exercise 1.4.4. Let N1, . . . , Nr be distinct reduced irreducible curves with N2
i < 0 for all i

such that no nonzero nonnegative sum m1N1 + · · · + mrNr is nef. Then there is an orthogonal
basis N∗1 , . . . , N

∗
r where N∗1 = N1, N

∗
2 = c21N

∗
1 + N2, N

∗
3 = c31N

∗
1 + c32N

∗
2 + N3, . . ., N

∗
r =

cr1N
∗
1 +cr2N

∗
2 +· · ·+cr,r−1N∗r−1+Nr with each cij rational and cij ≥ 0 (so each N∗i is a nonnegative

rational linear combination of the Nj) and (N∗i )2 < 0 for each i.

Lemma 1.4.5. Let N1, . . . , Nr be reduced irreducible curves. Then the matrix (Ni ·Nj) is negative
definite if and only if no nonzero nonnegative sum m1N1 + · · ·+mrNr is nef.

Proof. Assume the matrix (Ni ·Nj) is negative definite. Thus for any nonzero nonnegative linear
combination N = m1N1 + · · ·+mrNr we have N2 < 0 and hence N is not nef.

Conversely, assume no nonzero nonnegative sum m1N1 + · · · + mrNr is nef. Thus N2
i < 0 for

all i. Now apply Exercise 1.4.4. Thus the span of N1, . . . , Nr has an orthogonal basis where each
basis element has negative self-intersection, hence (Ni ·Nj) is negative definite. �
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Exercise 1.4.6. Let V be a finite dimensional vector space with a positive definite inner product.
Let v1, . . . , vr be a basis such that vivj ≤ 0 for all i 6= j. If v ∈ V has vvi ≥ 0 for all i, show that
v = a1v1 + · · ·+ arvr where ai ≥ 0 for all i.

Corollary 1.4.7. Let N1, . . . , Nr be reduced irreducible curves with N2
i < 0 for all i such that no

nonzero nonnegative sum m1N1 + · · ·+mrNr is nef. Then there is a dual basis N ′1, . . . , N
′
r where:

N ′iNj = 0 for all i 6= j; N ′iNi = (N ′i)
2 < 0 for all i; and each N ′i is a nonnegative rational linear

combination of the Nj.

Proof. By Lemma 1.4.5, the intersection form on the span of N1, . . . , Nr is negative definite. The
dual basis elements N ′i are solutions to the linear equations N ′iNj = 0, which are defined over the
integers, so the solutions are rational linear combination of the Nj . Negative definiteness gives
(N ′i)

2 < 0, and N ′iNi = (N ′i)
2 comes down to a choice of scaling. The fact that each N ′i is a

nonnegative rational linear combination of the Nj comes from Exercise 1.4.6 (after converting the
result to the negative definite case). �

Proof of Theorem 1.4.1. Start with D = M + N , where M = 0 and N = m1N1 + · · · + mrNr. If
some nonzero nonnegative sum S = n1N1 + · · · + nrNr is nef, let c be the minimum of the ratios
mi/ni for which ni > 0. Replace M by M + cS and replace N by N − cS. Then D = M +N and
M and N are still nonnegative sums of the Ni, with M still nef but N having one fewer summand.
Repeat this process until either N = 0 or N is a sum N = bi1Ni1 + · · · + bijNis such that bij > 0
for all j but no nonnegative sum of the Nij is nef.

Thus we have D = M +N where M is a nef nonnegative rational sum of the curves Ni, and N
is either 0 (and we are done) or a positive rational sum N = bi1Ni1 + · · ·+ bijNis where no nonzero
nonnegative sum of the Nij is nef.

In the latter case, if MNij = 0 for all i we take P = M and N as is, and we are done. So
suppose MNij > 0 for some i. Consider the dual basis {N ′jk} given in Corollary 1.4.7. We can

write N ′ij =
∑

j aijNij with nonnegative aij . Choose the maximum t such that taij ≤ bij for all j

and such that (M + tN ′ij )Nij ≥ 0, and replace M by M + tN ′ij and N by N − tN ′ij . Then either the

number of basis elements Njk meeting M positively has gone down by 1 of the number of terms in
N has gone down by 1. Repeating this process eventually gives a P = M orthogonal to all terms
(if any) of N .

Moreover, if D′ is effective with Zariski decomposition P ′ + N ′, and linearly equivalent to D,
then P ′ and P are linearly equivalent and N ′ = N .

For the uniqueness assertion, pick an integer t > 0 such that tP , tP ′, tN and tN ′ are all integral.
Then some component C1 of tN has C1 · tN < 0, so C1 · tN ′ ≤ C1 · tD′ = C1 · tD = C1 · tN < 0.
Thus C1 is a component of tN ′. If tN 6= C1, then for some component C2 of tN −C1, by negative
definiteness we have C2 · (tN ′ −C1) ≤ C12 · (tN −C1) < 0. Repeating this, we eventually see that
tN ′ − tN is effective. Reversing the argument shows that tN ′ − tN is also effective, so tN ′ = tN .
Thus tP ′ = tD′ − tN ′ is linearly equivalent to tP = tD − tN , as claimed. �

Computing α̂(I) can sometimes come from computing Zariski decompositions.

Proposition 1.4.8. Let p1, · · · , pr be distinct points in the plane and let I be the radical ideal of the
points. Let X be the surface obtained by blowing up of the points and let F = dL−m1E1−· · ·−mrEr.
If F has a Zariski decomposition of the form P+N where P 6= 0 and N = aL−b(E1+· · ·+Er) 6= 0,
then α̂(I) = a

b .

Proof. Since N is effective we have α̂(I) ≤ a
b . Let E = E1 + · · · + Er. Since P is nef, we

have (PL)b(α̂(I)) − bPE = P (b(α̂(I))L − bE) ≥ 0 = PN = (PL)a − bPE, so b(α̂(I)) ≥ a or
α̂(I)) ≥ a/b. �

Example 1.4.9. Compute α̂(I) for the ideal I of the points of intersection of the lines in the
following figure.



LECTURES ON ASYMPTOTICS OF LINEAR SYSTEMS WITH CONNECTIONS TO LINE ARRANGEMENTS 11

Answer: Let p1 be the triple point, p2, p3, p4 the other three points. Take E = E2 + E3 + E4

and F = 8L− 5E1 − 4E. Its Zariski decomposition is P = 3L− 2E1 −E and N = 5L− 3E1 − 3E,
where N is the sum of the proper transforms of the lines through p1 and twice the proper transform
of the line through the other 3 points. So α̂(I) = 5/3.

Exercise 1.4.10. Use a Zariski decomposition to compute α̂(I) for the ideal I of the points of
intersection of the lines in the following figure.

Exercise 1.4.11. Use a Zariski decomposition to compute α̂(I) for the ideal I of the points of
intersection of d > 2 general lines in the plane.

Exercise 1.4.12. Let X be the surface obtained by blowing up points p1, . . . , pr. Let I be the
ideal of the points and let Ft,m = tL−m(E1 + · · ·+ Er). Show that

α̂(I) = inf
{ t

m
: h0(X,OX(Ft,m)) > 0

}
.
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2. Bounded Negativity Conjecture (BNC) and H-constants

2.1. Bounded Negativity. Let X be a smooth projective surface. If C is a curve on X, how
negative can C2 be? This certainly depends on X. For example, for X = P2 we have C2 > 0 for
all C.

Exercise 2.1.1. LetX → P2 be the blow up of n ≥ 2 distinct points p1, . . . , pn on a line L ⊂ P2. Let
L be the pullback of a line and Ei the blow up of pi. Consider the divisor F = dL−m1E1−· · ·−mnEn
on X.

(a) Show that |F | is nonempty if and only if d ≥ max(m1, . . . ,mn, 0).
(b) If D is a divisor on X such that D · Ei ≥ 0 for all i and D ·H ≥ 0 where H is the proper

transform of L (so H ∼ L − E1 − · · · − En), show that D2 ≥ 0. Conclude that the only
reduced irreducible curves C on X with C2 < 0 are E1, . . . , En and H.

(c) Let C be an effective divisor and let m be the multiplicity of the irreducible component
of C of maximum multiplicity. Show that C2 ≥ −m2n and that curves C exist such that
equality holds. (Hint: Write C = P + N , where P is the sum of the components of C
with nonnegative self-intersection, and N is the sum of the irreducible components of C
of negative self-intersection, hence N = a0H + a1E1 + · · · + anEn for some ai ≥ 0, so
N2 ≥ −

∑
i(ai − a0)2. Conclude that C2 ≥ N2 ≥ −m2n. )

This brings us to the Bounded Negativity Conjecture, an old still open folklore conjecture that
goes back at least to F. Enriques. There are various versions of the BNC. Here’s one.

Conjecture 2.1.2. Let X be a smooth projective surface, either rational or complex. Then there
is a bound BX such that for any effective divisor C on X, we have C2/m2 ≥ BX , as long as m is
a positive integer at least as big the multiplicity of every component of C.

Here’s another.

Conjecture 2.1.3. Let X be a smooth projective surface, either rational or complex. Then there
is a bound BX such that for any effective reduced divisor C on X, we have C2 ≥ BX .

And one more:

Conjecture 2.1.4. Let X be a smooth projective surface, either rational or complex. Then there
is a bound bX such that for any effective reduced irreducible divisor C on X, we have C2 ≥ bX .

Over field of positive characteristic bounded negativity can fail; see [6, Exercise V.1.10]. But
no counterexamples are known for rational surfaces in any characteristic or for smooth complex
projective surfaces.

All three versions of the BNC given above are equivalent. For the equivalence of the second and
third, see [3, Proposition 5.1], which given the bound bX in fact shows that BX ≤ (ρ(X) − 1)bX
suffices, where ρ(X) is the Picard number of X.

Now we show that the first and second versions are equivalent.

Theorem 2.1.5. Conjecture 2.1.2 holds for X if and only if Conjecture 2.1.3 holds for X, using
the same bound BX .

Proof. Clearly, Conjecture 2.1.2 implies Conjecture 2.1.3. Conversely, given an effective divisor
C = m1C1 + · · ·+mnCn, we have C2/m2 ≥ (Ci1 + · · ·+Cir)2 ≥ BX for some subset of components
Cij , by Lemma 2.1.6, where m is the maximum of the mi. �

Lemma 2.1.6. Let X be a smooth projective surface. Let C = m1C1 + · · · + mnCn for distinct
reduced irreducible curves Ci on X and integers m ≥ mi > 0 with m = max(m1, . . . ,mn). Then
for some nonempty subset Ci1 , . . . , Cir of the components Ci we have C2 ≥ m2(Ci1 + · · ·+ Cir)2.
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Proof. If C · Ci ≥ 0 for all i, we may assume that m = mn, and then C2 ≥ m2C2
n, so assume that

C ·Ci < 0 for some i. Let P =
∑

C·Ci≥0miCi and N =
∑

C·Cj<0mjCj . Note that PN ≥ 0 since P

and N have no components in common. Then C2 = CP + CN ≥ CN = PN + N2 ≥ N2. Note
that N · Cj < 0 for each Cj that appears in N .

It now is enough to prove the claim for N , so we are reduced to the case that C = m1C1 + · · ·+
mnCn with C · Ci < 0 for all i and m ≥ mi for all i. We have 0 > C · miCi ≥ C · mCi, hence
0 > C2 = C ·

∑
imiCi ≥ C ·

∑
imCi = mC ·

∑
iCi. Now write C = P + N where now P is the

sum of the terms mjCj in C such that Cj ·
∑

iCi ≥ 0 and N is the sum of those terms mjCj with
Cj ·

∑
iCi < 0. Let Q be the same as N except where the coefficient mj of Cj in each term is

replaced by 1. Then 0 > C ·
∑

iCi = (P + N) ·
∑

iCi ≥ N ·
∑

iCi ≥ mQ ·
∑

iCi ≥ mQ2. Thus
C2 ≥ C ·m

∑
iCi ≥ m2Q2. �

Example 2.1.7. Given an effective divisor C = m1C1 + · · · + mnCn it’s clear in general that
C2 ≥ m2(C1 + · · · + Cn)2 is false, when m is the maximum of the mi. Take C = L1 + 2L2

for two different lines Li in the plane. Then C2 = 9, but 22(L1 + L2)
2 = 16. However, in the

proof of Lemma 2.1.6, we reduce to the case that C = m1C1 + · · · + mnCn with C · Ci < 0
for all i. One might hope in this case that C2 ≥ m2(C1 + · · · + Cn)2, but alas no. Blow up
the 11 points shown in Figure 4 and let A and B be the proper transforms of A′ and B′. Then
(A+ 2B)2 = A2 + 4AB + 4B2 = −6 < −4 = 22(A+B)2. However we do have (A+ 2B)2 ≥ 22B2.

A′

B′

Figure 4. Two conics, A and B, in the plane, one through 6 points, the other through 7 points,
giving 11 points with 2 in common.

Zariski decompositions provide an easy way to prove Conjectures 2.1.3 and 2.1.4 are equivalent.

Proof. Certainly, if self-intersections of reduced curves are bounded below, then so are the self-
intersections of irreducible curves on X. Conversely, let D be any reduced effective divisor. Write
D = C1+ · · ·+Cr where the Ci are distinct reduced, irreducible curves. Let D = P+N be a Zariski
decomposition where N = n1N1 + · · · + nsNs with 0 ≤ ni ≤ 1 rational for all i and the Ni prime
divisors of negative self-intersection. Then D2 ≥ N2 ≥ (n1N1)

2 + · · ·+ (nsNs)
2 ≥ N2

1 + · · ·+N2
s ≥

(ρ(X)− 1) mini{N2
i }, where ρ(X) = |S|+ 1 is the Picard number of X (i.e., the rank of the divisor

class group). The last inequality comes from Exercise 1.4.2. �

2.2. H-constants. Given the longstanding difficulty of resolving BNC, it is worth considering
variations on the problem, such as the problem of H-constants. A number of different versions
have been defined [2, 5, 8, 11]. Here we define them for any curve (typically they have been defined
for reduced curves).

Definition 2.2.1. Let C1, . . . , Cr be distinct reduced irreducible plane curves and let C = m1C1 +
· · · + mrCr where mi > 0 are integers with m = max(m1, . . . ,mr). Then for any nonempty finite
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subset S ⊂ P2
K we define

H(C, S) =
d2 −

∑
p∈S(multpC)2

m2|S|
.

We also define

H(C) = inf
{
H(C, S) : S ⊂ P2, 0 < |S| <∞

}
,

Hred(P2
K) = inf

{
H(D) : D is a reduced curve in P2

K

}
,

Hrir(P2
K) = inf

{
H(D) : D is a reduced, irreducible curve in P2

K

}
and

H(P2
K) = inf

{
H(D) : D is a curve in P2

K

}
(Clearly H(P2

K) ≤ Hred(P2
K) ≤ Hrir(P2

K).)

Exercise 2.2.2. Let C be a plane curve. Show that

inf
{
H(C, S) : S ⊂ C, 0 < |S| <∞

}
= inf

{
H(C, S) : S ⊂ P2, 0 < |S| <∞

}
.

Theorem 2.2.3. If Hrir(P2
K) > −∞, then Conjecture 2.1.2 holds for every smooth projective

rational surface X over the field K.

Proof. Consider a birational morphism Y → X of smooth projective surfaces. Let C ′ be a reduced,
irredcuible curve on X and C its proper transform on Y . Then C2 ≥ (C ′)2. Thus if Conjecture
2.1.4 holds for Y , it also holds for X. However, if X is rational, it is a blow up of points (possibly
infinitely near) on a Hirzebruch surface Hn for some n. By blowing up n general points of Hn, we
obtain a surface that is also obtained by blowing up distinct points of P2. (Note, for example, that
by blowing up n points pi on a line in P2 and any point p off that line, we get a surface B which by
contracting the proper transforms of the lines through p and each pi gives a birational morphism
B → Hn.) Thus by blowing up n general points of X we get a birational morphism Y → X, where
there is also a birational morphism Y → P2 obtained by blowing up a finite set S of distinct points
of P2.

If Conjecture 2.1.4 did not hold for Y , there would be an infinite sequence C1, C2, . . . of reduced,
irreducible curves on Y such that C2

1 > C2
2 > · · · . In all but finitely many cases, Ci maps

to a plane curve Di under Y → P2, and so Ci is the proper transform of Di, hence we have
C2
i /|S| = (deg(Di)

2 −
∑

p∈S(multpDi)
2)/|S| = H(Di, S), which implies Hrir(P2) = −∞. Thus

Hrir(P2
K) >∞ implies Conjecture 2.1.4 which in turn implies Conjecture 2.1.2. �

Example 2.2.4. In fact Hred(P2
K) = −∞ if char(K) = p > 0. Let C be the union of all of the lines

in P2 defined over a finite field Fq ⊂ K of order q. There are q2 + q + 1 such lines with q2 + q + 1
crossing points, and each point lies on q + 1 lines. Let S be the points. Then H(C, S) = −q, so
Hred(P2

K) = −∞.

Open Problem 2.2.5. Is H(P2
K) = Hred(P2

K) true for all K?

Open Problem 2.2.6. Is Hred(P2
C) = −4? We know Hred(P2

C) ≤ −4 due to sequences Cn of
reducible curves whose components are plane cubics (see [9, 10, 4]), but no complex plane curve C
is known with H(C) ≤ −4. Thus it is of interest to find some examples or show that none exist.

Open Problem 2.2.7. Is Hrir(P2
K) = −2? In fact, there is no irreducible plane curve C known

over any K with H(C) ≤ −2.

Exercise 2.2.8. Show that Hrir(P2
K) ≤ −2 over any K by giving a sequence of irreducible curves

Cn with limn→∞H(Cn) = −2.
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Exercise 2.2.9. If C is a smooth plane curve, m ≥ 1 and S any nonempty finite subset of C, show
that H(mC) = −1 < H(mC,S).

Exercise 2.2.10. If C is a reduced plane curve, m ≥ 1 and S any nonempty finite subset of smooth
points of C, show that H(mC) ≤ −1 < H(mC,S).

Exercise 2.2.11. If C is any plane curve, show that −∞ < H(C) ≤ −1.
(Hint: Show min{−max{m2

1, . . . ,m
2
n, 0},−1} ≤ H(C), where the mi are the multiplicities, if any,

of the singular points of the reduced curve red(C).)

Theorem 2.2.12. Let C be a reduced singular plane curve of some degree d, let T be the set of
singular points of C. Then H(C) < −1 if and only if |T | > 0 and H(C, T ) < −1, in which case
H(C) = H(C,U) for some nonempty subset U ⊆ T .

Proof. First, assume |T | > 0 and H(C, T ) < −1. Then clearly H(C) < −1, since H(C) is an
infimum over all finite subsets of C. Conversely, first assume |T | = 0. Then C is smooth, so
H(C) = −1 by Exercise 2.2.9.

Next, assume |T | > 0 but H(C, T ) ≥ −1. Let |T | = t and let m1, . . . ,mt be the multiplicities
of C at these points. Let S be a finite set of smooth points of C; let s = |S|. Then H(C, T ) =
(d2 −

∑
im

2
i )/t ≥ −1, so H(C, S ∪ T ) = (d2 − s−

∑
im

2
i )/(s+ t) ≥ (−t− s)/(s+ t) = −1. Also, if

s > 0, then H(C, S) > −1 by Exercise 2.2.10.
Now assume t > 0 and H(C, T ) ≥ −1, and let U ∪ V = T be a disjoint union of nonempty

subsets. Let u = |U |, v = |V | and mp be the multiplicity of C at a point p. Then H(C,U) = (d2−∑
p∈U m

2
p)/u. If this were less than −1, then −1 ≤ H(C, T ) = (d2−

∑
p∈U m

2
p−
∑

p∈V m
2
p)/(u+v) <

(−u−
∑

p∈V m
2
p)/(u+v) ≤ (−u−4v)/(u+v) < −1. Thus H(C,U) ≥ −1 for every nonempty subset

U ⊆ T . Now arguing as before for finite any set of smooth points S of C we have H(C, S∪U) ≥ −1.
Thus H(C) ≥ −1.

Finally, assume H(C) < −1. Thus there are finite subsets W of C with H(C,W ) < −1. For any
finite subset S of smooth points we saw H(C, S) > −1, so W must include points from T . Write
W as a disjoint union W = S ∪U where U ⊆ T and the points in S are smooth. If H(C,U) ≥ −1,
then we saw above that we would have H(C,W ) = H(C, S ∪ U) ≥ −1. Thus H(C,U) < −1, and
so H(C,W ) = H(C, S ∪U) = (d2 − s−

∑
p∈U m

2
p)/(s+ u) = (−s+ uH(C,U))/(s+ u) > H(C,U),

where the last inequality is because −1 > H(C,U). Thus the least values of H come from subsets
of T , but T is finite so the infimum is a minimum, and this minimum is attained for a subset of
T . �

Open Problem 2.2.13. Is there an example of a singular plane curve C such that H(C,U) <
H(C, T ) for some nonempty proper subset U of the set T of singular points of red(C)?

Exercise 2.2.14. If C is a reduced singular plane curve C such that H(C,U) < H(C, T ) for some
nonempty proper subset U of the set T of singular points of C, show that H(C, T ) < −4.

Given Open Problem 2.2.7, attention turned to the opposite extreme, curves which are unions
of lines [2, 11]. Here are the main facts (see [2]). Define

Hrlin(P2
K) = inf

{
H(D) : D is a reduced union of lines in P2

K

}
.

We have:

−2.6 ≥ Hrlin(P2
Q) ≥ −3,

Hrlin(P2
R) = −3,

and

−3.358 > −225

67
≥ Hrlin(P2

C) ≥ −4.
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The bound −2.6 ≥ Hrlin(P2
Q) comes from taking horizontal, vertical and diagonal lines. The

equality Hrlin(P2
R) = −3 comes from Hrlin(P2

R) ≥ −3 (apply Theorem 1.1.2) and by giving examples
H(C) approaching −3 (there are lots; e.g., regular polygons with their lines of bilateral symmetry).
The bound −225

67 ≥ Hrlin(P2
C) comes from the Wiman arrangement. The bound Hrlin(P2

C) ≥ −4
comes from applying an inequality due to Hirzebruch [7]: given any complex arrangement of n > 3
lines line such that tn = tn−1 = 0, we have

t2 +
3

4
t3 ≥ d+

∑
k≥5

(k − 4)tk.

Exercise 2.2.15. Let L1, . . . , Ld be distinct lines in the P2
K . Assume that neither the lines nor

any subset of d− 1 of the lines are concurrent. Also assume that t2 = 0. Let C be the curve given
by the union of the lines. Let S be the set of the singular points of C, and set s = |S|.

(a) Show that H(C, S) ≤ −2. Give an example where equality holds.
(b) If K = C, show that d ≤ 3s/4.
(c) If K = C, show that H(C, S) ≤ −2.25. Give an example where equality holds.

Open Problem 2.2.16. Can more be said about Hrlin(P2
Q) and Hrlin(P2

C)?

2.3. Another formulation of bounded negativity. Let X be the blow up of the plane at a
finite set of points S. We say that X has bounded Zariski denominators if there is an integer d
such that for for each divisor D and integer t > 0 such that tD is linearly equivalent to an effective
divisor, there is an integer 0 ≤ e ≤ d such that the Zariski decomposition etD = P +N has integral
divisors P and N .

We now state a version of the main theorem of [1].

Theorem 2.3.1. Let X be the blow up of the plane at a finite set of points S. Then bounded
negativity holds on X (i.e., the set of self-intersections C2 of reduced curves on X is bounded
below) if and only if X has bounded Zariski denominators.

An exercise will be helpful.

Exercise 2.3.2. Let X be a blow up of the plane at s points. Let C = dL−m1E1 − · · · −msEs
be any divisor with C2 < 0 and let the gcd of d,m1, . . . ,ms be g. Then there is an ample divisor
F such that FC and C2 have gcd g.

Proof of Theorem 2.3.1. Assume bounded negativity holds on X; i.e., C2 ≥ −b for some b and
every irreducible curve C. Let D = d1D1 + · · ·+ drDr be effective (so each di is positive and each
Di is a prime divisor) with Zariski decomposition D = P +N . Then P and N are sums of the Di

with nonnegative rational coefficients. Since D is integral, the largest denominator used for P is also
the largest denominator used for N , so it’s enough to look at N . Say N = n1N1 + · · ·+nsNs where
each ni is positive rational and each Ni is a prime divisor of negative self-intersection. Note that
DNi = (n1N1 + · · ·+ nsNs)Ni gives linear equations for the ni. The solution involves dividing by
det(NiNj), so the largest possible denominator is det(NiNj), but | det(NiNj)| ≤ |N2

1 · · ·N2
s | (since

the volume of a parallelepiped with edges of fixed length is most when the edges are orthogonal).

By Exercise 1.4.2, we have s ≤ |S|. Thus the largest possible denominator is |b||S|, where b is a
lower bound for self-intersections of irreducible curves on X.

Conversely, assume X has bounded Zariski denominators, with bound b. Let C ∼ dL−m1E1 −
· · ·−mrEr be any prime divisor with C2 < 0. Let C = gD where g is the gcd of d,m1, . . . ,mr. Now
say C is a prime divisor with C2 < 0, and pick D to be primitive (i.e., not linearly equivalent to tD′

for any integral divisor D′ with t an integer bigger than 1) such that C = gD. By Exercise 2.3.2 we
can pick an ample divisor F such that FC = g. Since the Zariski decomposition of D is D = C/g, we
have g ≤ b. But for large m, the Zariski decomposition of F+mC is P = F+(m−a)C and N = aC
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for some a, so a = (CF + mC2)/C2, hence the denominator needed here is C2/ gcd(CF,C2) ≤ b,
hence C2 ≤ b gcd(CF,C2) = bg ≤ b2. �

Exercise 2.3.3. Let X be the blow up of the plane at a finite number of points such that there is
a finite list A = {a1, . . . , ar} such that for every prime divisor D with D2 < −1 we have D2 ∈ A.
Assume that there are at most ni distinct divisors D with D2 = ai for each i with ai < −1. Show
that no denominator bigger than |an1

1 · · · anr
r | is ever needed for a Zariski decomposition on X.

Exercise 2.3.4. Determine the largest denominator needed for a Zariski decomposition when X
is the blow up of r colinear points of the plane.

Exercise 2.3.5. Determine the largest denominator needed for a Zariski decomposition when X
is the blow up of r+ 1 points of the plane on a line L1 and s+ 1 points on a different line L2, where
one of the points is the point of intersection of the two lines. Assume r − 1 and s− 1 are coprime
and each is at least 2. [Hint: By “adjunction”, we have C2 ≥ −2 +C(3L−E1 − · · · −Er + s+ 1);
see [1, Example 3.2].]
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3. Containment Problems

3.1. Powers and symbolic powers. Given distinct points pi ∈ PN , let Z = m1p1 + · · ·+msps ⊂
PN be a fat point subscheme. Recall that the mth symbolic power of I(Z) is I(Z)(m) = I(p1)

mim∩
· · · I(ps)

mmi . It is interesting to compare this with the rth ordinary power I(Z)r = (I(p1)
m1 ∩

· · · I(ps)
ms)r for various m and r. A useful fact here is that I(Z)r = Q∩I(rZ) for some M -primary

ideal Q, where M = (x0, . . . , xN ). In particular, Q contains a power of M , hence [Q]t = [M ]t for
all t� 0, hence [I(Z)r]t = [I(rZ)]t for all t� 0.

Exercise 3.1.1. Let I = I(Z) for Z = m1p1 + · · ·+msps ⊂ PN with mi > 0 for all i.

(a) Show that Ir ⊆ Im if and only if r ≥ m.

(b) Show that Im ⊆ I(m).

(c) If r ≥ m, show that Ir ⊆ I(m) and I(r) ⊆ I(m).

(d) If m > r, show that Ir 6⊆ I(m). (Hint: look at dimensions of [K[PN ]/I(m)]t and [K[PN ]/Ir]t
for t� 0.)

(e) Conclude that Ir ⊆ I(m) if and only if r ≥ m.

(f) If m < r, show that I(m) 6⊆ Ir.

It is a subtle and generally open problem to determine for which m and r we have I(m) ⊆ Ir,
but for m� 0 we always do have containment:

Exercise 3.1.2. Let I = I(Z) for Z = m1p1 + · · ·+msps ⊂ PN . Given r > 0, let tr be the least t

such that dim[K[PN ]/Ir]t = deg(rZ). If m ≥ max{r, tr}, show that I(m) ⊆ Ir.

Let I = I(Z) for some fat point scheme Z ⊂ PN . As a refinement of Exercise 3.1.2, we define

the saturation degree of Ir: satdeg(Ir) is the least t such that (Ir)j = (I(r))j for all j ≥ t.

Exercise 3.1.3. Let I = I(Z) for Z = m1p1 + · · ·+msps ⊂ PN , and let tr be as defined in Exercise
3.1.2. Show that tr ≥ satdeg(Ir).

Proposition 3.1.4. Let I = I(Z) be a fat point scheme Z ⊂ PN . If m ≥ max(satdeg(Ir), r), then

I(m) ⊆ Ir.

Proof. Since m ≥ r, we have I(m) ⊆ I(r). Since m ≥ satdeg(Ir), if [I(m)]t 6= 0, then t ≥ m ≥
satdeg(Ir), so [I(m)]t ⊆ [I(r)]t = [Ir]t. Hence I(m) ⊆ Ir. �

Example 3.1.5. The quantity satdeg(Ir) in Proposition 3.1.4 can be quite large. Consider the
case that Z consists of r2 general points in the plane. Then it is known that dim I(mZ)t =

max(0,
(
t+2
2

)
− r2

(
m+1
2

)
) by [7, 13, 19]. One can now check that α(I(Z)r) = rα(I(Z)) > 6

5r
2 ≥

α(I(rZ)) ≥ α̂(I(Z)) for r ≥ 3. But α(I(Z)r) > α(I(rZ)) implies satdeg(I(Z)r) ≥ α(I(Z)r) > 6
5r

2.

Thus to apply Proposition 3.1.4 to Z here, m cannot be less than or equal to 6
5r

2.

A formerly open question was:

Question 3.1.6. Given I = I(Z) for a fat point subscheme Z ⊂ PN , we know for each r there is

an n such m ≥ rn implies I(m) ⊆ Ir (take n = max{1, tr/r}), but is there one n that works for all
r? And is there an n also independent of Z?

Motivated by [20], the papers [12, 17] give a very general answer, given in Theorem 3.1.7. To
see why this result is so surprising, compare the bound it gives for containment (namely, m ≥ Nr)
to the bound required for containment by Proposition 3.1.4, which by Example 3.1.5 may require
m to be larger than 6r2/5.

Theorem 3.1.7. Let I ⊆ K[PN ] be a homogeneous ideal I. Then I(r(m+N−1)) ⊆ (I(m))r, and if
m ≥ rN , then (with an appropriate definition of symbolic power when I is not a radical ideal of a

finite set of points) we have I(m) ⊆ Ir.
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The question now became: is this result optimal? There are various approaches to this question.
Here’s one showing no constant less than N suffices [6]:

Theorem 3.1.8. If c < N , there is an r > 0 and m > cr such that I(m) 6⊆ Ir for some I = I(Z),
where Z = p1 + · · ·+ ps ⊂ PN for distinct points pi.

Exercise 3.1.9. Let Z ⊂ PN be a fat point subscheme, I = I(Z). If α(I(m)) < rα(I), show that

I(m) 6⊆ Ir.

Exercise 3.1.10. Pick s > 2 lines in P2 with t2 = 0. For simplicity, assume s is even. Let Z be
the

(
s
2

)
crossing points and take I = I(Z). If m < 2r (again for simplicity, assume m is even),

show that I(m) 6⊆ Ir for s � 0. This shows that there is no c < 2, such that m ≥ cr is enough to
guarantee that I(m) ⊆ Ir. A similar construction holds for PN . (Hint: see Exercise 1.3.8.)

3.2. The resurgence. Although m ≥ Nr is optimal as a universal bound for homogeneous ideals
in K[PN ], what can one say about bounds for a specific ideal? This question leads to the definition
of an asymptotic quantity, the resurgence [6].

Definition 3.2.1. Given a fat point scheme Z ⊂ PN , define the resurgence ρ(I) for I = I(Z) to be

ρ(I(Z)) = sup
{m
r

: I(m) 6⊆ Ir
}
.

The following result is from [6]. For this we need a new quantity, the regularity.

Definition 3.2.2. The regularity reg(I) of I = I(Z) for a fat point subscheme Z ⊂ PN . is defined

by specifying that reg(I)− 1 is the least t such that dim[I]t =
(
t+2
2

)
− deg(Z).

Fact 3.2.3. Let I be the ideal of a fat point subscheme of projective space. An important fact about
reg(I) is that [Ir]t = [I(r)]t for t ≥ r reg(I) (see [6]). Another is that I has a set of homogeneous
generators each of which has degree at most reg(I) [9].

Theorem 3.2.4. Let I = I(Z) for a nonempty fat point subscheme Z ⊂ PN .

(a) We have 1 ≤ ρ(I) ≤ N .

(b) If m/r < α(I)
α̂(I) , then for all t� 0 we have I(mt) 6⊆ Irt.

(c) If m/r ≥ reg(I)
α̂(I) , then I(m) ⊆ Ir.

(d) We have

α(I)

α̂(I)
≤ ρ(I) ≤ reg(I)

α̂(I)
,

hence α(I)
α̂(I) = ρ(I) if α(I) = reg(I).

Proof. (a) By Theorem 3.1.7, we have ρ(I) ≤ N . By Exercise 3.1.1(f), we have ρ(I) ≥ 1.

(b) If m/r < α(I)
α̂(I) , then mα̂(I) < rα(I), so for t � 0 we have mtα̂(I) ≤ mtα(I(mt)) < rtα(I),

hence I(mt) 6⊆ Irt by Exercise 3.1.9.

(c) Now say m/r ≥ reg(I)
α̂(I) . Then α(I(m)) ≥ mα̂(I) ≥ r reg(I). If t < α(I(m)), then [I(m)]t =

(0) ⊆ Ir. If t ≥ α(I(m)), then t ≥ r reg(I) hence [I(m)]t ⊆ [I(r)]t = [Ir]t. Thus I(m) ⊆ Ir.
(d) This follows from (b) and (c). �

No examples are known with ρ(I) = N , but there are a lot of examples with ρ(I) = 1. For

example, if |Z| = 1, so Z consists of a single reduced point, then ρ(I) = 1, since I(m) = Im, but it

is not not known if ρ(I) = 1 guarantees that Im = I(m) for all m.
An asymptotic version of the resurgence was introduced in [14].
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Definition 3.2.5. Given a fat point scheme Z ⊂ PN , define the asymptotic resurgence ρ̂(I) for
I = I(Z) to be

ρ̂(I(Z)) = sup
{m
r

: I(ms) 6⊆ Irs for s� 0
}
.

In contrast to the case of the resurgence, the result of the following exercise holds not just for
ideals I of points, which is one advantage of the asymptotic resurgence (see [14]).

Exercise 3.2.6. Let Z ⊂ PN be a fat point subscheme and let I = I(Z) ⊂ PN .

(a) Show that 1 ≤ ρ̂(I) ≤ ρ(I).
(b) Show that

α(I)

α̂(I)
≤ ρ̂(I) ≤ ω(I)

α̂(I)
,

where ω(I) is the maximal degree among a minimal set of homogeneous generators of I.
(Hint: Mimic the proof of Theorem 3.2.4(d), using the fact that there is a constant c such
that reg(Is) ≤ sω(I) + c for all s > 0 [18].)

3.3. Other perspectives on optimality. By Theorem 3.1.8, the bound m ≥ rN in Theorem
3.1.7 is optimal, in the sense that N cannot be replaced by a smaller number and always still have
the containment I(m) ⊆ Ir. But given the containment I(Nr) ⊆ Ir, one can ask whether there are
other ways to make the I(Nr) bigger or the ideal Ir smaller and still always have containment.

For example, Craig Huneke raised the question: Given a reduced 0-dimensional subscheme Z ⊂
P2, to what extent is the result I(4Z) ⊆ I(Z)2 optimal? In particular, is it always true that
I(3Z) ⊂ I(Z)2?

Experimentation and partial results suggested the answer is Yes (it is true for example if K has
characteristic 2; see [2]). Thus I raised a more general conjecture [2], a simplified version of which
is:

Conjecture 3.3.1. Let Z ⊂ PN be a fat point subscheme. Then I((Nr − N + 1)Z) ⊆ I(Z)r for
all r ≥ 1.

Huneke’s question is the case that r = N = 2. Over C this is the only case for which there are now
counterexamples to the containment I((Nr −N + 1)Z) ⊆ I(Z)r. Indeed, the first counterexample
for any r and N over any field K was for N = r = 2 over C: take the points Z of the Fermat
arrangement for n = 3. Then I(3Z) 6⊆ I(Z)2 [11]. Additional counterexamples were soon found:
there is a version in characteristic 3 [5], and additional positive characteristic counterexamples are
now known for various r and N [16], and one can also take Z to be the points of the Fermat for
any n ≥ 3 [16], or the Klein or Wiman [3, 21].

Example 3.3.2. Here is Macaulay2 code for verifying I(3) 6⊆ I2 for the n2 +3 points of the Fermat
arrangement with 3n lines.

R=QQ[x,y,z];

n=5;

I=ideal(x^n-y^n, x^n-z^n);

J=ideal(x*y,x*z,y*z);

K=intersect(I,J);

K3=intersect(I^3,saturate(J^3));

isSubset(K3,K^2)

Example 3.3.3. Here is Macaulay2 code for verifying I(3) 6⊆ I2 for the 49 points of the Klein
arrangement of 21 lines.

-- Define the field

K=toField(QQ[c]/(c^2+c+2))
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R=K[x,y,z];

-- Define the lines

F={x, x+c*y-z, -x+c*y-z, x+c*y+z, -x+y+c*z, y+z, c*x+y-z, z, c*x+y+z, c*x-y-z,

-x+z, -x-y+c*z, -x+y, c*x-y+z, -x+c*y+z, x+z, -y+z, x+y, x-y+c*z, x+y+c*z, y};

-- Find the product of the 21 linear forms

H=1_R;

apply(F,s->H=H*s);

-- Make a list of the ideals of the 49 intersection points of pairs of lines

W=subsets(21,2);

W4={}

apply(W,s->(flag=0;apply(W4,t->(if ideal(F_(t_0),F_(t_1))==ideal(F_(s_0),F_(s_1))

then flag=1)); if flag==0 then W4=W4|{s}));

-- Define the ideal of the points

I=ideal(1_R);

apply(W4,s->(I=intersect(I,ideal(F_(s_0),F_(s_1)))));

-- Since H is in I^(3), it is enough to check that H is not in I^2

isSubset(ideal(H),I^2)

Example 3.3.4. Here is Macaulay2 code for verifying I(3) 6⊆ I2 for the 201 points of the Wiman
arrangement of 45 lines.

-- Define the field

K=toField(QQ[a]/(a^4-a^2+4))

R=K[x,y,z];

-- Define the lines

A=(-1/4)*(a^3-3*a-2);

B=(1/4)*(a^3+a-2);

F={y,(-1+A)*x+A*y+z,z,(1-A)*x+A*y-z,A*x+y+(-1+A)*z,-A*x+y+(1-A)*z,

(-1+A)*x-B*y+(-A-A*B)*z,(1-A)*x-B*y+(A+A*B)*z, (1-A)*x+A*y+z,

A*x+y+(1-A)*z, -x+(-1+A)*y+A*z, (-1-A*B)*x+y+(-1-B)*z,

(1-A)*x+B*y+(-A-A*B)*z, A*x+(B-A*B)*y+(-1-B)*z, (-A-A*B)*x+(1-A)*y-B*z,

(-1+A)*x+A*y-z, -A*x+y+(-1+A)*z, x+(-1+A)*y-A*z, (1+A*B)*x+y+(1+B)*z,

(-1+A)*x+B*y+(A+A*B)*z, -A*x+(B-A*B)*y+(1+B)*z, (A+A*B)*x+(1-A)*y+B*z,

(1+B)*x+(-1-A*B)*y+z, x+(-1+A)*y+A*z, x+(1-A)*y+A*z, (-1-A*B)*x+y+(1+B)*z,

(-A-B)*x+(-1+A+A*B)*y, -B*x+y+(-A+B-A*B)*z, (-1-A*B)*x-y+(1+B)*z,

(-1-B)*x+A*y+(B-A*B)*z, (-1-B)*x+(-1-A*B)*y-z, (A+B)*x+(-1+A+A*B)*y,

B*x+y+(A-B+A*B)*z, (1+B)*x+A*y+(-B+A*B)*z, (-1+A+A*B)*x+(-A-B)*z, x,

(-1-B)*x+A*y+(-B+A*B)*z, (-A-B)*y+(-1+A+A*B)*z, -B*x+y+(A-B+A*B)*z,

(1+B)*x-B*y+(1-A+B)*z, x-A*B*y+(1-A+B-A*B)*z, (-A-B)*y+(1-A-A*B)*z,

(1+B)*x+(1+A*B)*y-z, (A+B)*x+(1+B-A*B)*z, B*x+(-1+A-B)*y+(-1-B)*z};

-- Find the product of the 45 linear forms

H=1_R;

apply(F,s->H=H*s);

-- Make a list of the ideals of the 49 intersection points of pairs of lines

W=subsets(45);

W4={}

apply(W,s->(flag=0;apply(W4,t->(if ideal(F_(t_0),F_(t_1))==ideal(F_(s_0),F_(s_1))

then flag=1)); if flag==0 then W4=W4|{s}));

-- Define the ideal of the points

I=ideal(1_R);

apply(W4,s->(I=intersect(I,ideal(F_(s_0),F_(s_1)))));
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-- Since H is in I^(3), it is enough to check that H is not in I^2

isSubset(ideal(H),I^2)

Additional counterexamples arise by taking subsets of points of the Wiman arrangement.

Example 3.3.5. Here is Macaulay2 code for verifying I(3) 6⊆ I2 for 200 of the 201 points of the
Wiman arrangement of 45 lines. The missing point has multiplicity 3 in this case, but similar failures
of containment occur by instead excluding a 4-point or a 5-point. The ideal of the 201 Wiman points
is generated by three forms of degree 16. The ideal of the 200 points has an additional generator
of degree 25, but the symbolic cube is generated in degree at most 49 (it has the usual degree 45
element, 20 generators of degree 48 and 6 of degree 49). Thus all homogeneous elements of I2 of

degree 49 or less vanish at all 201 points, but I(3) has elements of degree 49 that do not vanish at
the missing point, and so I(3) 6⊆ I2.
-- Define the field

K=toField(QQ[a]/(a^4-a^2+4))

R=K[x,y,z];

-- Define the lines

A=(-1/4)*(a^3-3*a-2);

B=(1/4)*(a^3+a-2);

F={y,(-1+A)*x+A*y+z,z,(1-A)*x+A*y-z,A*x+y+(-1+A)*z,-A*x+y+(1-A)*z,

(-1+A)*x-B*y+(-A-A*B)*z, (1-A)*x-B*y+(A+A*B)*z, (1-A)*x+A*y+z,

A*x+y+(1-A)*z, -x+(-1+A)*y+A*z, (-1-A*B)*x+y+(-1-B)*z,

(1-A)*x+B*y+(-A-A*B)*z, A*x+(B-A*B)*y+(-1-B)*z, (-A-A*B)*x+(1-A)*y-B*z,

(-1+A)*x+A*y-z, -A*x+y+(-1+A)*z, x+(-1+A)*y-A*z, (1+A*B)*x+y+(1+B)*z,

(-1+A)*x+B*y+(A+A*B)*z, -A*x+(B-A*B)*y+(1+B)*z, (A+A*B)*x+(1-A)*y+B*z,

(1+B)*x+(-1-A*B)*y+z, x+(-1+A)*y+A*z, x+(1-A)*y+A*z, (-1-A*B)*x+y+(1+B)*z,

(-A-B)*x+(-1+A+A*B)*y, -B*x+y+(-A+B-A*B)*z, (-1-A*B)*x-y+(1+B)*z,

(-1-B)*x+A*y+(B-A*B)*z, (-1-B)*x+(-1-A*B)*y-z, (A+B)*x+(-1+A+A*B)*y,

B*x+y+(A-B+A*B)*z, (1+B)*x+A*y+(-B+A*B)*z, (-1+A+A*B)*x+(-A-B)*z, x,

(-1-B)*x+A*y+(-B+A*B)*z, (-A-B)*y+(-1+A+A*B)*z, -B*x+y+(A-B+A*B)*z,

(1+B)*x-B*y+(1-A+B)*z, x-A*B*y+(1-A+B-A*B)*z, (-A-B)*y+(1-A-A*B)*z,

(1+B)*x+(1+A*B)*y-z, (A+B)*x+(1+B-A*B)*z, B*x+(-1+A-B)*y+(-1-B)*z};

-- Make a list of the ideals of the 49 intersection points of pairs of lines

W=subsets(45);

W4={}

apply(W,s->(flag=0;apply(W4,t->(if ideal(F_(t_0),F_(t_1))==ideal(F_(s_0),F_(s_1))

then flag=1)); if flag==0 then W4=W4|{s}));

-- Find the multiplicity of the point where line i and line j intersect

W5={}

W5=apply(W4,s->(n=0;apply(F,t->(if isSubset(ideal(t),ideal(F_(s_0),F_(s_1)))

then n=n+1)); W5|{s,n}));

toString W5

-- Here is what W5 turns out to be:

o15 = {{{0, 1}, 5}, {{0, 2}, 4}, {{1, 2}, 3}, {{2, 3}, 3}, {{0, 4}, 3}, {{1, 4},

5}, {{2, 4}, 5}, {{3, 4}, 4}, {{1, 5}, 4}, {{2, 5}, 5}, {{3, 5}, 5}, {{0,

6}, 3}, {{1, 6}, 4}, {{2, 6}, 5}, {{3, 6}, 5}, {{4, 6}, 3}, {{5, 6}, 4},

{{1, 7}, 5}, {{2, 7}, 5}, {{3, 7}, 4}, {{4, 7}, 4}, {{5, 7}, 3}, {{0, 8},

5}, {{5, 8}, 3}, {{6, 8}, 4}, {{7, 8}, 3}, {{0, 9}, 3}, {{1, 9}, 3}, {{6,

9}, 3}, {{7, 9}, 3}, {{8, 9}, 4}, {{4, 10}, 4}, {{6, 10}, 5}, {{0, 11},

3}, {{1, 11}, 3}, {{2, 11}, 3}, {{5, 11}, 5}, {{6, 11}, 3}, {{7, 11}, 3},

{{8, 11}, 5}, {{9, 11}, 3}, {{10, 11}, 4}, {{0, 12}, 3}, {{1, 12}, 3},
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{{3, 12}, 4}, {{4, 12}, 3}, {{5, 12}, 3}, {{7, 12}, 5}, {{8, 12}, 5}, {{9,

12}, 3}, {{10, 12}, 3}, {{11, 12}, 5}, {{0, 13}, 5}, {{1, 13}, 3}, {{2,

13}, 3}, {{3, 13}, 4}, {{5, 13}, 3}, {{6, 13}, 5}, {{7, 13}, 3}, {{8, 13},

3}, {{9, 13}, 5}, {{11, 13}, 3}, {{12, 13}, 4}, {{0, 14}, 5}, {{1, 14},

3}, {{3, 14}, 3}, {{4, 14}, 5}, {{5, 14}, 4}, {{6, 14}, 4}, {{8, 14}, 4},

{{9, 14}, 4}, {{10, 14}, 5}, {{11, 14}, 3}, {{4, 15}, 3}, {{6, 15}, 3},

{{7, 15}, 4}, {{12, 15}, 4}, {{13, 15}, 3}, {{3, 16}, 3}, {{7, 16}, 3},

{{12, 16}, 4}, {{13, 16}, 4}, {{14, 16}, 3}, {{15, 16}, 4}, {{5, 17}, 4},

{{7, 17}, 5}, {{11, 17}, 5}, {{14, 17}, 3}, {{2, 18}, 3}, {{3, 18}, 3},

{{4, 18}, 5}, {{6, 18}, 3}, {{8, 18}, 3}, {{15, 18}, 5}, {{16, 18}, 3},

{{1, 19}, 4}, {{3, 19}, 3}, {{4, 19}, 3}, {{5, 19}, 3}, {{8, 19}, 4}, {{9,

19}, 4}, {{14, 19}, 3}, {{15, 19}, 5}, {{16, 19}, 3}, {{17, 19}, 3}, {{18,

19}, 5}, {{1, 20}, 4}, {{2, 20}, 3}, {{3, 20}, 3}, {{4, 20}, 3}, {{6, 20},

3}, {{8, 20}, 3}, {{9, 20}, 4}, {{15, 20}, 3}, {{16, 20}, 5}, {{18, 20},

3}, {{1, 21}, 3}, {{3, 21}, 3}, {{4, 21}, 4}, {{5, 21}, 5}, {{7, 21}, 4},

{{9, 21}, 3}, {{10, 21}, 3}, {{12, 21}, 3}, {{15, 21}, 4}, {{16, 21}, 4},

{{0, 22}, 4}, {{2, 22}, 3}, {{10, 22}, 3}, {{14, 22}, 3}, {{7, 23}, 3},

{{10, 23}, 3}, {{11, 23}, 4}, {{13, 23}, 3}, {{20, 23}, 5}, {{22, 23}, 3},

{{6, 24}, 3}, {{13, 24}, 5}, {{17, 24}, 3}, {{18, 24}, 4}, {{20, 24}, 3},

{{0, 25}, 3}, {{3, 25}, 5}, {{4, 25}, 3}, {{15, 25}, 3}, {{16, 25}, 5},

{{17, 25}, 4}, {{18, 25}, 4}, {{19, 25}, 3}, {{0, 26}, 4}, {{2, 26}, 4},

{{4, 26}, 3}, {{9, 26}, 3}, {{0, 27}, 3}, {{2, 27}, 4}, {{5, 27}, 3},

{{10, 27}, 3}, {{22, 27}, 3}, {{23, 27}, 3}, {{1, 28}, 5}, {{8, 28}, 3},

{{9, 28}, 5}, {{10, 28}, 4}, {{11, 28}, 4}, {{12, 28}, 3}, {{21, 28}, 3},

{{15, 29}, 3}, {{24, 29}, 3}, {{2, 30}, 3}, {{17, 30}, 3}, {{24, 30}, 3},

{{5, 31}, 3}, {{16, 31}, 3}, {{17, 32}, 3}, {{24, 32}, 3}, {{30, 32}, 3},

{{8, 33}, 3}, {{23, 33}, 3}, {{0, 34}, 4}, {{2, 34}, 4}, {{26, 34}, 3},

{{31, 34}, 3}, {{22, 35}, 3}, {{27, 35}, 3}, {{29, 35}, 3}, {{30, 35}, 3},

{{32, 35}, 3}, {{33, 35}, 3}, {{1, 36}, 3}, {{10, 36}, 3}, {{17, 36}, 3},

{{24, 36}, 3}, {{26, 37}, 3}, {{0, 38}, 3}, {{33, 38}, 3}, {{23, 39}, 3},

{{29, 39}, 3}, {{3, 40}, 3}, {{10, 40}, 3}, {{17, 40}, 3}, {{31, 41}, 3}}

-- Remove one 3-point

W6 = {{0, 1}, {0, 2}, {2, 3}, {0, 4}, {1, 4}, {2, 4}, {3, 4}, {1, 5},

{2, 5}, {3, 5}, {0, 6}, {1, 6}, {2, 6}, {3, 6}, {4, 6}, {5, 6}, {1, 7},

{2, 7}, {3, 7}, {4, 7}, {5, 7}, {0, 8}, {5, 8}, {6, 8}, {7, 8}, {0, 9},

{1, 9}, {6, 9}, {7, 9}, {8, 9}, {4, 10}, {6, 10}, {0, 11}, {1, 11}, {2,

11}, {5, 11}, {6, 11}, {7, 11}, {8, 11}, {9, 11}, {10, 11}, {0, 12}, {1,

12}, {3, 12}, {4, 12}, {5, 12}, {7, 12}, {8, 12}, {9, 12}, {10, 12}, {11,

12}, {0, 13}, {1, 13}, {2, 13}, {3, 13}, {5, 13}, {6, 13}, {7, 13}, {8,

13}, {9, 13}, {11, 13}, {12, 13}, {0, 14}, {1, 14}, {3, 14}, {4, 14}, {5,

14}, {6, 14}, {8, 14}, {9, 14}, {10, 14}, {11, 14}, {4, 15}, {6, 15}, {7,

15}, {12, 15}, {13, 15}, {3, 16}, {7, 16}, {12, 16}, {13, 16}, {14, 16},

{15, 16}, {5, 17}, {7, 17}, {11, 17}, {14, 17}, {2, 18}, {3, 18}, {4, 18},

{6, 18}, {8, 18}, {15, 18}, {16, 18}, {1, 19}, {3, 19}, {4, 19}, {5, 19},

{8, 19}, {9, 19}, {14, 19}, {15, 19}, {16, 19}, {17, 19}, {18, 19}, {1,

20}, {2, 20}, {3, 20}, {4, 20}, {6, 20}, {8, 20}, {9, 20}, {15, 20}, {16,

20}, {18, 20}, {1, 21}, {3, 21}, {4, 21}, {5, 21}, {7, 21}, {9, 21}, {10,

21}, {12, 21}, {15, 21}, {16, 21}, {0, 22}, {2, 22}, {10, 22}, {14, 22},

{7, 23}, {10, 23}, {11, 23}, {13, 23}, {20, 23}, {22, 23}, {6, 24}, {13,

24}, {17, 24}, {18, 24}, {20, 24}, {0, 25}, {3, 25}, {4, 25}, {15, 25},
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{16, 25}, {17, 25}, {18, 25}, {19, 25}, {0, 26}, {2, 26}, {4, 26}, {9,

26}, {0, 27}, {2, 27}, {5, 27}, {10, 27}, {22, 27}, {23, 27}, {1, 28}, {8,

28}, {9, 28}, {10, 28}, {11, 28}, {12, 28}, {21, 28}, {15, 29}, {24, 29},

{2, 30}, {17, 30}, {24, 30}, {5, 31}, {16, 31}, {17, 32}, {24, 32}, {30,

32}, {8, 33}, {23, 33}, {0, 34}, {2, 34}, {26, 34}, {31, 34}, {22, 35},

{27, 35}, {29, 35}, {30, 35}, {32, 35}, {33, 35}, {1, 36}, {10, 36}, {17,

36}, {24, 36}, {26, 37}, {0, 38}, {33, 38}, {23, 39}, {29, 39}, {3, 40},

{10, 40}, {17, 40}, {31, 41}}

-- Define the ideal of the points

I=ideal(1_R);

apply(W6,s->(I=intersect(I,ideal(F_(s_0),F_(s_1)))));

-- It turns out that the product H of the linear forms is in I^2 so we need to

-- compute I^(3), which is slow.

I3=ideal(1_R);

apply(W6,s->(I3=intersect(I3,(ideal(F_(s_0),F_(s_1)))^3)));

-- Alternatively, one could try: I3=saturate(I^3);

isSubset(I3,I^2)

Open Problem 3.3.6. For which subsets Z of the 201 points of the Wiman arrangement do we
have I(3) 6⊆ I2, for I = I(Z)?

Counterexamples also occur over the reals [8] and one of them can be made to work over the
rationals [10]. This one is displayed in Figure 5. Take for Z the 19 crossing points of multiplicity
3. Then I(3Z) 6⊆ I(Z)2. In all of these counterexamples (i.e., the counterexample coming from the
Fermat, Klein and Wiman line arrangements and the counterexample coming from the arrangement
displayed in Figure 5), the failure is due to the fact that the form F coming from taking all of the
lines of a line arrangement satisfies F ∈ I(3Z) but F 6∈ I(Z)2.

Another common feature of all of these counterexamples is that t = deg(F )/3 is an integer, and
the least m with dim[I(mZ)]mt > 0 is m = 3. One might hope that I(3Z) 6⊆ I(Z)2 if and only if
t = deg(F )/3 is an integer, and the least m with dim[I(mZ)]mt > 0 is m = 3. It is possible that
this gives a necessary condition, but it is not sufficient.

For example, consider the line arrangement shown in Figure 5. It has 12 lines and 19 triple
points. Let Z be the reduced scheme consisting of those 19 points. Then I(3Z) 6⊆ I(Z)2, 3 divides
deg(F ) and the least m with dim[I(mZ)]m4 > 0 is m = 3. Now consider the line arrangement
shown in Figure 6. It is the dual of a famous arrangement of 13 points, shown in Figure 7. Take
as the lines of a line arrangement the 12 nondotted lines in Figure 6. It has 1 quadruple point,
18 triple points and 6 double points. Take for Z the 19 points of multiplicity more than 2. Then
I(3Z) ⊆ I(Z)2 even though 3 divides deg(F ) and the least m with dim[I(mZ)]m4 > 0 is m = 3.

This raises the question:

Open Problem 3.3.7. Given a point set Z coming from a line arrangement such that I(3Z) 6⊆
I(Z)2, must there be a t such that the least m with dim[I(mZ)]mt > 0 is m = 3? Must deg(F ) be
a multiple of 3?

All of the complex counterexamples have involved taking most of the points of a line arrangement
of multiplicity at least 3, for line arrangements that only have a few or no simple crossings. A recent
paper [1] leverages these counterexamples, by pulling them back by a finite cover of P2.

Example 3.3.8. Consider a line arrangement having t2 = 0. Let F be the product of the linear
forms of the lines. Let Z be the crossing points of the lines. Then since at least three lines
cross at each crossing point, we have F ∈ I(3Z). If it turns out that F 6∈ I(Z)2, then we have
I(3Z) 6⊂ I(Z)2. It can take work to check whether F 6∈ I(Z)2 (see [21]). The simplest case might be
as follows [5]. Take char(K) = 3. Choose the point p0 = [0 : 0 : 1] (represented in Figure 8 by the
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Figure 5. An arrangement of 12 lines with 19 triple points (and 9 double points).

Figure 6. The dual of the McKee arrangement: 13 lines with 6 double points, 18 triple points and
3 quadruple points (one of which is at infinity, in the direction of the vertical lines).

open dot). There are 9 lines defined over the prime subfield which do not contain this point. They
give an arrangement of 9 lines with 12 crossing points, and every crossing point has multiplicity
3. Take Z to be these 12 points. Note that for each point, the 3 lines of the arrangement through
that point also go through 3 more of the points. By Bezout’s Theorem, α(I(Z)) > 3, and clearly
α(I(Z)) ≤ 4.

The claim is that dim[I(Z)]4 = 3. There are various ways to verify this: for example, use facts
about Hilbert functions, or run it on a computer. Here’s a third way, in reference to Figure 8. Blow
up the 11 points p2, . . . , p12 shown to get a surface X. Let the blow up of Ei be the blow up of pi.
Denote the proper transforms of the lines Li also by Li. Then from

0→ OX(L4)→ OX(L4 + L3)→ OL3(−1)→ 0
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Figure 7. The McKee arrangement is based on two abutting regular pentagons. It has n = 13
points (including 4 at infinity in the directions of the lines) having only 6 ordinary lines (i.e., less
than n/2 lines through exactly two points of the arrangement, shown as solid lines; note that the
solid diagonal lines are parallel to the dashed lines).

we get h1(X,OX(L4 + L3)) = 0. Now from

0→ OX(L4 + L3)→ OX(L4 + L3 + L2)→ OL2 → 0

we get h1(X,OX(L4 + L3 + L2)) = 0. Note that L4 + L3 + L2 = 3L − E5 − · · · − E12. Now blow
up p1 to get Y . Then from

0→ OY (3L− E5 − · · · − E12)→ OY (4L− E1 − · · · − E12)→ OL1 → 0

we get h1(Y,OY (4L − E1 − · · · − E12)) = 0 and hence h0(Y,OY (4L − E1 − · · · − E12)) = 3, so
dim[I(Z)]4 = 3. It’s easy to check that the three quartics (namely x2y2(x2 − y2), x2z2(x2 − z2)
and y2z2(y2 − z2)) given by the four F3-lines through each of the coordinate vertices p0, p1, p2 are
linearly independent and so give a basis of [I(Z)]4. Note that they all vanish at all 13 F3-points
of P2. Thus every element of [I(Z)2]8 vanishes at all 13 points. But F (p0) 6= 0, so F 6∈ [I(Z)2]8.
Hence I(3Z) 6⊆ I(Z)2.

p4

p0

p1

L4

L1
p7

p10

p12 p11

L3

L2

p6

p5

p9
p8

p3

p2

Figure 8. The 12 chosen points pi of P2 over K = F3.

Exercise 3.3.9. Let Z ⊂ P2 be the 12 points of the Fermat arrangement for n = 3. Let I = I(Z).

It is easy to check by computer that α(I) = ω(I) = 4 and we know from above that I(3) 6⊆ I2.
Show that ρ̂(I) = 4

3 < ρ(I).
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In fact, by [10, Theorem 2.1], we have ρ̂(I) = n+1
n for the ideal I of the n2 + 3 points of the

Fermat arrangement for n ≥ 3, and ρ(I) = 3
2 .

If there are complex line arrangements in addition to the Fermat, Klein and Wiman with t2 = 0,
it seems reasonable to expect they would give additional counterexamples.

Another way to address optimality of I(rNZ) ⊂ I(Z)r is to make the right hand side of the
containment smaller. This led to the following conjecture [15]:

Conjecture 3.3.10. Let Z ⊂ PN be a fat point subscheme and let M = R1R for R = K[PN ].
Then I(NrZ) ⊆MNr−rI(Z)r for all r ≥ 1.

So far this conjecture remains open in all characteristics. The motivation was a conjecture of
Chudnovsky [4], aimed at improving the bound of Waldschmidt and Skoda (see Exercise 1.3.3(f)):

Conjecture 3.3.11. Let Z ⊂ PN be a fat point subscheme (in the original statement, Z was
reduced). Then

α(I(Z)) +N − 1

N
≤ α̂(I(Z)).

Exercise 3.3.12. Show that Conjecture 3.3.10 implies Conjecture 3.3.11. (Hint: Mimic Exercise
1.3.3(f).)

Likewise, if I((N + n − 1)rZ) ⊆ M (N−1)rI(nZ)r were true, then we would get an affirmative
answer to a question posed in [15]; i.e., we would have

α(I(nZ)) +N − 1

N + n− 1
≤ α̂(I(Z)).

When N = 2, n = 1 and Z is reduced this is a result of Chudnovksy [4]; see [15] for one proof.
Here’s a more geometric proof (this was probably along the lines of how Chudnovksy did it, but
he wasn’t very explicit in his paper). Let I = I(Z). Pick the largest subset S ⊆ Z (which need
not be unique) of the points of Z imposing independent conditions on forms of degree a = α(I).

Let s = |S|. Thus dim[I]a =
(
a+2
2

)
− s. If s <

(
a+1
2

)
, then dim[I]a−1 > 0. If s ≥

(
a+2
2

)
, then

dim[I]a = 0. Thus
(
a+1
2

)
≤ s <

(
a+2
2

)
. So we can pick a subset U ⊆ S such that |U | =

(
a+1
2

)
. Note

that α(I(U)) = reg(I(U)) by Definition 3.2.2, so I(U) is generated in degree at most a = α(I(U)) by
Fact 3.2.3. In particular, I(U)a has 0-dimensional zero locus, thus given a nonzero F ∈ I(mZ)am of
degree am = α(I(mZ)), we can pick a nonzero G ∈ I(U)a with no components in common with F ,

hence, by Bezout’s Theorem, we have ama = deg(F ) deg(G) ≥ m|U | = m
(
a+1
2

)
; i.e., ama ≥ m

(
a+1
2

)
and hence am

m ≥
a+1
2 , so α̂(I(Z)) ≥ α(I(Z))+1

2 .
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4. A new perspective on the SHGH Conjecture

4.1. Conditions imposed by fat points.

Open Problem 4.1.1. Find all degrees t and all fat point schemes X =
∑

imipi ⊂ P2 where
the points pi are general such that X unexpectedly fails to impose independent conditions on V =
(K[P2])t; i.e.,

dim I(X)t > min

(
0, dimV −

∑
i

((mi + 1

2

)))
.

The SHGH Conjecture gives a conjectural solution for this.

Exercise 4.1.2. Suppose we are given a smooth rational surface X, an exceptional curve E (i.e.,
a smooth rational curve with E2 = −1), and a divisor F on X. If h0(X,OX(F )) > 0, then
h1(X,OX(F + rE)) > 0 if (F + rE) · E ≤ −2.

If F is a divisor on a surface S obtained by blowing up general points pi of P2, the SHGH
Conjecture says:

Conjecture 4.1.3. If h0(S,OS(F )) > 0 and h1(S,OS(F )) > 0, then there is an exceptional curve
E on S such that F · E ≤ −2.

If this is true, then standard techniques allow one to compute h0(S,OS(F )) exactly for any
divisor F on S. For simplicity let’s assume s > 1.

Here is the idea: Given F = tL−
∑

imiEi for general points pi, there is an algorithmic procedure
which gives either a nef divisor H such that H · F < 0 (and hence h0(S,OS(F )) = 0), or which
gives a Zariski-like decomposition F = A +

∑
i ciCi such that A · E ≥ 0 for all exceptional curves

E, and the Ci are exceptional with ci ≥ 0, A · Ci = 0 and Ci · Cj = 0 for all i 6= j.

In this case h0(S,OS(F )) = h0(S,OS(A)) ≥ A2−KSA
2 + 1; the content of the SHGH Conjecture

is that this is an equality.

Exercise 4.1.4. Assuming the SHGH Conjecture, if C2 < 0 for a reduced irreducible curve C on
a blow up X of P2 at general points pi, show that C is an exceptional curve.

A sample more general problem: Find examples of reduced point schemes Z ⊂ P2 and t such
that dim I(Z)t ≤ 3 but for every p there is a curve of degree t containing Z singular at p.

We will relate this to the following open problem (this and all that follows is based on [1], which
in turn was motivated by the paper [2]):

Open Problem 4.1.5. Find all t and fat points Z =
∑

j ajqj and general fat points X =
∑

imipi
in P2 such that X unexpectedly fails to impose independent conditions on V = I(Z)t; i.e.,

(1) dim(I(X)t ∩ V ) > min
(

0, dimV −
∑
i

(
mi + 1

2

))
.

Example 4.1.6. Each of the following give examples of an X and Z where X unexpectedly fails
to impose independent conditions on V = I(Z)t.

(a) If Z = 0, this is just is just a case of Problem 4.1.1, so is solved by the SHGH Conjecture.
(b) If Z consists of fat points where the points are general, this also in principle is solved by

the SHGH Conjecture.
(c) If Z is reduced and consists of the the 7 points of the Fano plane (so char(K) = 2),

then this is an example of both the sample problem and Problem 4.1.5, where we have
V = I(Z)t, t = 3, X = 2p, dimV = 3. Being singular at p imposes 3 conditions, so we
expect no curve, but for every point p there is a cubic through Z singular at p (specifically
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F = α2yz(y + z) + β2xz(x + z) + γ2xy(x + y) vanishes at the 7 points and is singular at
p = (α, β, γ)).

(d) Take X = mp and let Z be reduced, consisting of the points dual to the 3n Fermat lines
where n ≥ 5, n + 1 ≤ m ≤ 2n − 4 and t = m + 1. (Its splitting type, defined below, is
(n+ 1, 2n− 2).)

(e) Take X = mp and let Z be reduced, consisting of the points dual to the Klein lines; m = 9
and t = 10. (Its splitting type is (9, 11).)

(f) Take X = mp and let Z be reduced, consisting of the points dual to the Wiman lines;
19 ≤ m ≤ 23 and t = m+ 1. (Its splitting type is (19, 25).)

It is not obvious how to find such examples. Doing so uses some theory. Let Z = q1 + · · · + qr
be a reduced point scheme in P2, `j the linear form dual to qj , and let F = `1 · · · `r. Now assume
that char(K) does not divide deg(F ), and let JF be the Jacobian sheaf (i.e., the sheafification of
the ideal (Fx, Fy, Fz) generated by the partial derivatives of F ), and D the syzygy bundle; i.e., the
sheaf defined by the exact sheaf sequence

0→ D → O3 → JF (r − 1)→ 0.

Restricted to a general line L we get D|L = OL(−a) ⊕ OL(−b) where a + b = d − 1, a ≤ b. Call
(a, b) the splitting type of Z.

To state the results, it’s convenient to introduce a quantity tZ , defined as the least j such that

dim I(Z)j+1 >
((

j+1
2

))
.

Theorem 4.1.7. Let Z be a reduced 0-dimensional subscheme of P2 of splitting type (a, b) with
X = mp for a general point p ∈ P2. Then (1) holds for some degree t if and only if aZ < tZ .
Furthermore, in this case the degrees t for which (1) holds are precisely those in the range aZ <
t < bZ .

Here’s another version:

Theorem 4.1.8. Given a reduced 0-dimensional subscheme Z ⊂ P2 of splitting type (a, b) and
X = mp for a general point p ∈ P2, then (1) holds in degree t = m+ 1 if and only if

(a) a ≤ m ≤ b− 2 and
(b) tZ + 1 ≥ reg(I(Z)).

Proof. See [1]. The proof uses ideas of [3] to relate syzygies and singular curves via the point line
correspondence in the plane. �

Here’s an example run using Maculay2 [4], version 1.4.

Example 4.1.9. Let’s verify an instance of Theorem 4.1.7. Consider the Fermat line arrangement
for n = 5. The form defining the lines is F = (x5 − y5)(x5 − z5)(y5 − z5). The scheme Z of points
dual to the 15 lines has ideal I(Z) = (x5 + y5 + z5, xyz). First we compute te splitting type. In
this case we do not need to restrict to a general line, since the syzygy bundle is free, so we can read
the splitting off directly from the first syzygy module in a minimal free resolution of the Jacobian
ideal J = (Fx, Fy, Fz).

i1 : R=QQ[x,y,z];

i2 : F=(x^5-y^5)*(x^5-z^5)*(y^5-z^5);

i3 : J=ideal(jacobian(ideal(F)));

i4 : betti res J
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0 1 2

o4 = total: 1 3 2

0: 1 . .

1: . . .

.

.

.

11: . . .

12: . . .

13: . 3 .

14: . . .

15: . . .

16: . . .

17: . . .

18: . . 1

19: . . .

20: . . 1

We see that J has three generators of degree 14, as expected, and the generators of the syzygy
module have degrees 6 and 8, giving the splitting type (6, 8), in agreement with Example 4.1.6(d).

It is possible to pick a generic point for p. We can take p = (A,B, 1) where A ad B are variables,
but this requires working over the field K = Q(A,B). The Macaulay2 commands for this are
K = frac(Q[A,B]), R = K[x, y, z]. But working over K = Q(A,B) is hard for my laptop running
Macaulay2, so we pick a random point for p instead.

i1 : R=QQ[x,y,z];

i2 : p=ideal(random(1,R), random(1,R));

i3 : Z=ideal(x^5+y^5+z^5,x*y*z);

i4 : I5=intersect(p^5,Z);

i5 : betti res I5

0 1 2

o5 = total: 1 7 6

0: 1 . .

1: . . .

2: . . .

3: . . .

4: . . .

5: . . .

6: . 6 4

7: . 1 2

-- Note I5 has no element of degree 6.

i6 : I6=intersect(p^6,Z);

i7 : betti res I6
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0 1 2

o7 = total: 1 7 6

0: 1 . .

1: . . .

2: . . .

3: . . .

4: . . .

5: . . .

6: . 1 .

7: . 6 5

8: . . 1

-- So the least m for which I(Z+mp) has an element of degree m+1 is m=6;

-- i.e., a_Z = 6.

i8 : for i from 2 to 8 do print {i,hilbertFunction(i,R)-hilbertFunction(i,I6),

hilbertFunction(i,R)-hilbertFunction(i,Z)}

{2, 0, 0}

{3, 0, 1}

{4, 0, 3}

{5, 0, 7}

{6, 0, 13}

{7, 1, 21}

{8, 9, 30}

-- 6p should impose 21 conditions on I(Z)_7, making I(Z+6p)_7 = 0

-- but instead we see dim I(Z+6p)_7 = 1, so 6p unexpectedly

-- fails to impose independent conditions on I(Z)_7.

i9 : I7=intersect(p^7,Z);

i10 : for i from 2 to 9 do print {i,hilbertFunction(i,R)-hilbertFunction(i,I7),

hilbertFunction(i,R)-hilbertFunction(i,Z)}

{2, 0, 0}

{3, 0, 1}

{4, 0, 3}

{5, 0, 7}

{6, 0, 13}

{7, 0, 21}

{8, 2, 30}

{9, 12, 40}

-- 7p should impose 28 conditions on I(Z)_8, making I(Z+6p)_8 = 2

-- and it is, so 7p imposes independent conditions I(Z)_8.

Exercise 4.1.10. Let Z be the 9 points of shown in Figure 2. Let p be a general point. Show
that there is an irreducible quartic though the points of Z, with a triple point at p. Conclude
that it is unique. (Hint: Assume the four general points in the figure, shown in black, are
(001), (010), (100), (111). The other 5 points then become (011), (101), (110), (1 − 10), (112). Use
a computer to compute the splitting type, and tZ , and apply Theorem 4.1.7. Then use Bezout to
show irreducibility and uniqueness.)
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4.2. Curves and syzygies. This result raises the question why there should be a connection
between curves and syzygies. Assume char(K) = 0. Let s = (s0, s1, s2) be a minimal syzygy (i.e.,
of least degree possible) of ∇F = (Fx, Fy, Fz); i.e., s · ∇F = 0, meaning

s0Fx + s1Fy + s2Fz = 0.

Since s is minimal, the si have no nonconstant common factor. Thus s defines a rational map
s : P2 99K P2 defined at all but a finite set of points. Therefore, s restricts as a morphism
s|L : L→ P2 to a general line L.

Exercise 4.2.1. If s : P2 99K P2 is defined at p ∈ P2 but s(p) = p, show that F (p) = 0. (Hint:
Look at s · ∇F and use Euler’s identity xFx + yFy + zFz = deg(F )F .)

Exercise 4.2.2. Let f = (f0, f1, f2) = (x, y, z) × s, so f0 = ys2 − zs1, f1 = −(xs2 − zs0) and
f2 = xs1− ys0. Let ` = Ax+By+Cz be a linear factor of F . For any point p = (a, b, c) for which
s(p) 6= p, show that f(p) is the point dual to the line through p and s(p). If in addition `(p) = 0
but p is not a singular point of F = 0, show that `(s(p)) = 0 and conclude that f(p) is the point
dual to the line defined by `. (Hint: apply the product rule for ∇F .)

Exercise 4.2.3. If s is not the identity on any line defined by F = 0, show that f |L :→ P2 defines
a morphism whose image contains the points Z dual to the lines defined by the linear factors of F
and such that the points of L∩ s(L) map to the point dual to L. (Aside: In fact, s(L) is a curve of
degree deg(si) + 1 that contains Z and has a point of multiplicity deg(si) at the point dual to L.)

Exercise 4.2.4. If s is not the identity on any line defined by F = 0, show that (x, y, z) × f =
−deg(F )Fs, hence we can recover s from f .
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